Question

In: Physics

A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision...

A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision with a 10.0 g object that is initially at rest.

(a) Find the velocity of each object after the collision.
cm/s (5.00 g object)
cm/s (10.0 g object)
(b) Find the fraction of the initial kinetic energy transferred to the 10.0 g object.
%

Solutions

Expert Solution


Related Solutions

A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 33.0 cm/s. Find the velocity of each object after the collision. 10.0g object _________ 15.0g object _________
a 4.2 g coin sliding to the right at 21.4 cm/s makes an elastic head-on collision...
a 4.2 g coin sliding to the right at 21.4 cm/s makes an elastic head-on collision with a 12.6g coin that is initially at rest. after the collision, the 4.2g coin moves to the left at 10.7cm/s. a. find the final velocity of the other coin in cm/s b. find the amount of kinetic energy transferred to the 12.6g coin
A 2.0-g particle moving at 8.6 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 8.6 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object? b)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on inelastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object?
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s...
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 25.0 g moving in the same direction with a speed of 17.0 cm/s. If the collision is elastic, determine the speed of each object after the collision. 25.0-g object cm/s 7.00-g object cm/s
A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a...
A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a 11.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision. (Take the positive direction to be to the right. Indicate the direction with the sign of your answer.)
A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with...
A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with a(n) 12.1 g object moving in the same direction at 18.9913 cm/s. Find the velocity of the first object immediately after the collision. Answer in units of cm/s. Find the velocity of the second object immediately after the collision. Answer in units of cm/s.
A 3.4 kg block moving with a velocity of +4.9 m/s makes an elastic collision with...
A 3.4 kg block moving with a velocity of +4.9 m/s makes an elastic collision with a stationary block of mass 1.8 kg. (a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. m/s (for the 3.4 kg block) m/s (for the 1.8 kg block) (b) Check your answer by calculating the initial and final kinetic energies of each block....
A pool ball moving at 5m/s makes an elastic collision with an identical ball which is...
A pool ball moving at 5m/s makes an elastic collision with an identical ball which is initially at rest. After the collision, one ball moves at an angle of 30o with respect to the original direction of motion. a) Find the direction of motion of the other ball after the collision b) Find the speed of each ball after the collision.
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a...
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a carbon atom initially at rest. (a) What fraction of the neutron's kinetic energy is transferred to the carbon nucleus? (The mass of the carbon nucleus is about 12.0 times the mass of the neutron.) ANSWER: 0.284 (b) the initial kinetic energy of the neutron is 3.10 10-13 J. Find its final kinetic energy and the kinetic energy of the carbon nucleus after the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT