Question

In: Physics

A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a...

A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a 11.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision. (Take the positive direction to be to the right. Indicate the direction with the sign of your answer.)

Solutions

Expert Solution

Here the collision is elastic hence momentum is conserved

According to conservation of momentum,

Total momentum before collision is equal to total momentum after collision


Related Solutions

A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with...
A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with a(n) 12.1 g object moving in the same direction at 18.9913 cm/s. Find the velocity of the first object immediately after the collision. Answer in units of cm/s. Find the velocity of the second object immediately after the collision. Answer in units of cm/s.
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball...
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball (Ball B) moving at 4.00 m/s in the same direction. 1) Find the speed of Ball A after the collision. 2) Find the speed of Ball B after the collision.
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s...
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 25.0 g moving in the same direction with a speed of 17.0 cm/s. If the collision is elastic, determine the speed of each object after the collision. 25.0-g object cm/s 7.00-g object cm/s
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision...
A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision with a 10.0 g object that is initially at rest. (a) Find the velocity of each object after the collision. cm/s (5.00 g object) cm/s (10.0 g object) (b) Find the fraction of the initial kinetic energy transferred to the 10.0 g object. %
A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 33.0 cm/s. Find the velocity of each object after the collision. 10.0g object _________ 15.0g object _________
An object of mass m is moving in +x direction at u velocity and collides elastically...
An object of mass m is moving in +x direction at u velocity and collides elastically with a stationery object in the x direction having a mass M. after the collision the object with mass m travels in +y direction and the object with mass M travels in a direction with an angle theeta to the x axes. find the value of theeta?
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two...
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two coupled railroad cars moving in the same direction at 1.20 m/s. All cars have a mass of mass 1.10 105 kg. Determine the following. (a) speed of the three coupled cars after the collision____ (Give your answer to at least two decimal places.) m/s (b) kinetic energy lost in the collision ___ J 2. A cue ball at rest on a frictionless pool table...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with a 450 g ball that is moving to the right at 1.0 m/s. A. If the collision is perfectly elastic, what is the speed of the 100 g ball after the collision? B. If the collision is perfectly elastic, what is the speed of the 450 g ball after the collision? Express your answer to two significant figures and include the appropriate units. I...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200 g ball that is moving to the left at 3.0 m/s. If the collision is perfectly elastic, what are the speeds of each ball after the collision? (Vfx)1 and (Vfx)2 What is the direction of 100-g ball after the collision? upward, downard, to the right, to the left? What is the direction of 200-g ball after the collision? upward, downward, to the right, to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT