Question

In: Physics

A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball...

A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball (Ball B) moving at 4.00 m/s in the same direction.

1) Find the speed of Ball A after the collision.

2) Find the speed of Ball B after the collision.

Solutions

Expert Solution

Let me be the mass of the balls.

Initial velocity of ball A is

Initial velocity of ball B is

Let and be the final velocities of ball A and ball B respectively.

By the conservation of momentum, total momentum of the two ball system before the collision is equal to the total momentum of the system after the collision

Substituting and we get

In elastic collision, total kinetic energy of the system before the collision is equal to the total kinetic energy of the system after the collision

Substituting and we get

Using equation (1)

Since initial velocity of ball B is 4m/s, it cannot be the final velocity.

Using (1)


Related Solutions

A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a...
A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a 11.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision. (Take the positive direction to be to the right. Indicate the direction with the sign of your answer.)
A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with...
A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with a(n) 12.1 g object moving in the same direction at 18.9913 cm/s. Find the velocity of the first object immediately after the collision. Answer in units of cm/s. Find the velocity of the second object immediately after the collision. Answer in units of cm/s.
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two...
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two coupled railroad cars moving in the same direction at 1.20 m/s. All cars have a mass of mass 1.10 105 kg. Determine the following. (a) speed of the three coupled cars after the collision____ (Give your answer to at least two decimal places.) m/s (b) kinetic energy lost in the collision ___ J 2. A cue ball at rest on a frictionless pool table...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
An object of mass m is moving in +x direction at u velocity and collides elastically...
An object of mass m is moving in +x direction at u velocity and collides elastically with a stationery object in the x direction having a mass M. after the collision the object with mass m travels in +y direction and the object with mass M travels in a direction with an angle theeta to the x axes. find the value of theeta?
A car moving due east at 6 m/s collides at the intersection with an identical car....
A car moving due east at 6 m/s collides at the intersection with an identical car. If the entangled wreckage moves at 5.5 m/s at 22 degrees north of east after the collision, what was the velocity and direction of the second car immediately before the collision? The entangled wreckage slides along the horizontal road leaving skid marks. If the coefficient of friction between the entangled wreckage and the road is 0.34, how long are the skid marks?
A 1.2 kg ball moving with a velocity of 8.0 m/s collides head-on with a stationary...
A 1.2 kg ball moving with a velocity of 8.0 m/s collides head-on with a stationary ball and bounces back at a velocity of 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball, (b) the velocity of the other ball after the collision, (c) the momentum of each ball before and after the collision, and (d) the kinetic energy of each ball before and after the collision.
A 100 g ball moving to the right at 4.1 m/s catches up and collides with...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with a 450 g ball that is moving to the right at 1.0 m/s. A. If the collision is perfectly elastic, what is the speed of the 100 g ball after the collision? B. If the collision is perfectly elastic, what is the speed of the 450 g ball after the collision? Express your answer to two significant figures and include the appropriate units. I...
2. A 10 kg ball moving to the right with a speed of 6.0 m/s collides...
2. A 10 kg ball moving to the right with a speed of 6.0 m/s collides with a 20 kg ball moving to the left at a speed of 4.0 m/s. (a) If this is a head-on, perfectly inelastic collision, what is the velocity of the balls after the collision. Give magnitude and direction. (5 pts.) (b) If this is a head-on collision and the the 10 kg ball moves to the left with a speed of 7.0 m/s after...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200 g ball that is moving to the left at 3.0 m/s. If the collision is perfectly elastic, what are the speeds of each ball after the collision? (Vfx)1 and (Vfx)2 What is the direction of 100-g ball after the collision? upward, downard, to the right, to the left? What is the direction of 200-g ball after the collision? upward, downward, to the right, to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT