Question

In: Physics

A plane electromagnetic wave with magnetic field amplitude 0.02 T is propagating through a vacuum. What...

  1. A plane electromagnetic wave with magnetic field amplitude 0.02 T is propagating through a vacuum.
  1. What is the electric field amplitude?                                B) What is the magnitude of the Poynting vector?

C. If the wavelength is 500 nm what is the wave frequency and the energy of a single photon?

D. How many of these photons must pass through a square meter each second to yield the power flux calculated in part B?

Solutions

Expert Solution

The magnetic field amplitude is given by
   
A)
The electric field amplitude is
   
  

B)
The magnitude of the Poynting vector is
   
  
  
  

C)
Given the wavelength
  
the wave frequency is
   


And so, the energy of the single photon is
  
  

D)
  So, the number of photons moving per second per square meter to yield the power flux calculated in part B, is given by
  
  
  


Related Solutions

The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating...
The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating in a vacuum in the z-direction is described by B⃗ =(B1sin(kz−ωt))(i^+j^)B→=(B1sin⁡(kz−ωt))(i^+j^) where B1 = 5.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? m-1 2) What is zmax, the distance along the positive z-axis to the position where the magnitude of the magnetic field is...
Write an equation for the magnetic field of an electromagnetic wave traveling in vacuum if the...
Write an equation for the magnetic field of an electromagnetic wave traveling in vacuum if the amplitude is 0.0028 T and the frequency is 2.0 × 108 Hz. Find the magnetic field when x = 32 cm and t = 6.8 ns.
The magnetic field of a uniform plane wave propagating in the +Y direction in medium with...
The magnetic field of a uniform plane wave propagating in the +Y direction in medium with {ɛ, = 18, µ, = 1, 0 = 5}. At y = 0 is H = a, cos(10°n t) (A/m). Determine: %3D a) What is the type of this medium b) The values and units of the following wave parameters a, B,n, vp, A, & and write the name of each parameter. c) Write the expressions of E(y, t) & H(y, t) at y...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by the expression: B (r, t) = (10^−6 )[xˆ + 2yˆ + Bzzˆ] cos [ωt + 3x - y - z] in m.k.s.units and where xˆ, yˆ, zˆ are unit vectors along the cartesians axes . Find: (a) The propagation direction. (b) The wavelength λ. (c) The angular frequency ω. (d) The associated electrical field
A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. Part A If at...
A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. Part A If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 3.40V/m , what is the magnitude of the magnetic field of the wave at this same point in space and instant in time? Part B What is the direction of the magnetic field?
The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗...
The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗ (?, ?) = 2 cos (α? - ω?) ? + 2 sin (α? - ω?) ?, ?? (?/?); ???? α ? ω ??? ?????????? a) What is the amplitude E0 of the electric field, its angular frequency, period, frequency f, wave number | ?⃗ |, wavelength, its speed u and its phase constant φ? b) I) Determine the electric field in the x-y plane...
Consider an electromagnetic harmonic plane wave, where the peak electric field amplitude is 1 N/C. a)...
Consider an electromagnetic harmonic plane wave, where the peak electric field amplitude is 1 N/C. a) What is the irradiance of this plane wave? b) Consider such a wave with a frequency in the centre of the visible band of the electromagnetic spectrum. What is the number of photons passing through an area of 1 m2 in 1 second? (Assume the area the light is passing through is perpendicular to the wave’s propagation direction). c) Now consider two additional waves...
The components of the electric field in an electromagnetic wave traveling in vacuum are described by...
The components of the electric field in an electromagnetic wave traveling in vacuum are described by Ex = 0, Ey = 0, and Ez = 2.84 sin(8.73x - ωt) V/m, where x is measured in meters and t in seconds. Calculate the frequency of the wave. Tries 0/99 Calculate the wavelength of the wave. Tries 0/99 Calculate the amplitude of the magnetic field of the wave. Tries 0/99 Calculate the intensity of the wave. Tries 0/99
At some time t the time-varying magnetic field component of an electromagnetic wave is pointed in...
At some time t the time-varying magnetic field component of an electromagnetic wave is pointed in the -xˆ direction. If the electromagnetic wave velocity is in the -zˆ direction, what is the direction of the time-varying electric field component of this wave at t? Please explain the reasoning behind the answer A. yˆ B. -yˆ C. -zˆ D. zˆ
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (3.1 V/m) cos[(? × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT