Question

In: Physics

At some time t the time-varying magnetic field component of an electromagnetic wave is pointed in...

At some time t the time-varying magnetic field component of an electromagnetic wave is pointed in the -xˆ direction. If the electromagnetic wave velocity is in the -zˆ direction, what is the direction of the time-varying electric field component of this wave at t?

Please explain the reasoning behind the answer

A. yˆ

B. -yˆ

C. -zˆ

D. zˆ

Solutions

Expert Solution

Electromagnetic (EM) waves are changing electric and magnetic fields, transporting energy and momentum through space. EM waves are solutions of Maxwell's equations, which are the fundamental equations of electrodynamics. EM waves require no medium, they can travel through empty space. Sinusoidal plane waves are one type of electromagnetic waves. Not all EM waves are sinusoidal plane waves, but all electromagnetic waves can be viewed as a linear superposition of sinusoidal plane waves traveling in arbitrary directions. A plane EM wave traveling in the x-direction is of the form

E(x,t) = Emaxcos(kx - ωt + φ),  B(x,t) = Bmaxcos(kx - ωt + φ).

E is the electric field vector, and B is the magnetic field vector of the EM wave. For electromagnetic waves E and B are always perpendicular to each other and perpendicular to the direction of propagation. The direction of propagation is the direction of E x B.

If, for a wave traveling in the x-direction E = Ej, then B = Bk and j x k = i. Electromagnetic waves are transverse waves.

Now we have given is that, the direction of magnetic field component at time "t" is in -x direction and the wave velocity is in "-z" direction.

we know that cross product of electric field component direction and magnetic field component direction gives us the direction of propagation , means

we already know the direction of propagation which is in -z direction, therefore to satisafy the given condition the magnetic field component must be in "-y " direction.

Thus the electric field component of EM wave at time "t" is in "-y" direction, hence the option B is correct answer


Related Solutions

A plane electromagnetic wave with magnetic field amplitude 0.02 T is propagating through a vacuum. What...
A plane electromagnetic wave with magnetic field amplitude 0.02 T is propagating through a vacuum. What is the electric field amplitude?                                B) What is the magnitude of the Poynting vector? C. If the wavelength is 500 nm what is the wave frequency and the energy of a single photon? D. How many of these photons must pass through a square meter each second to yield the power flux calculated in part B?
Derive the electromagnetic wave equation in terms of the magnetic field H
Derive the electromagnetic wave equation in terms of the magnetic field H
Write an equation for the magnetic field of an electromagnetic wave traveling in vacuum if the...
Write an equation for the magnetic field of an electromagnetic wave traveling in vacuum if the amplitude is 0.0028 T and the frequency is 2.0 × 108 Hz. Find the magnetic field when x = 32 cm and t = 6.8 ns.
The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating...
The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating in a vacuum in the z-direction is described by B⃗ =(B1sin(kz−ωt))(i^+j^)B→=(B1sin⁡(kz−ωt))(i^+j^) where B1 = 5.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? m-1 2) What is zmax, the distance along the positive z-axis to the position where the magnitude of the magnetic field is...
A rectangular loop of wire is immersed in a non-uniform and time-varying magnetic field. The magnitude...
A rectangular loop of wire is immersed in a non-uniform and time-varying magnetic field. The magnitude of the field is given by B = 4t2x2 , where t is the time in seconds and x is one dimension of the loop. The direction of the field is always perpendicular to the plane of the loop. The loop extends from x = 0 to x = 3.0 m and from y = 0 to y = 2.0 m. What is the...
The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗...
The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗ (?, ?) = 2 cos (α? - ω?) ? + 2 sin (α? - ω?) ?, ?? (?/?); ???? α ? ω ??? ?????????? a) What is the amplitude E0 of the electric field, its angular frequency, period, frequency f, wave number | ?⃗ |, wavelength, its speed u and its phase constant φ? b) I) Determine the electric field in the x-y plane...
1 a) What is the approximate electric field strength and magnetic field strength of the electromagnetic...
1 a) What is the approximate electric field strength and magnetic field strength of the electromagnetic waves radiated by a 60-W lightbulb, as measured 5.5 m from the bulb? You can assume that the bulb is 100% efficient in converting electrical energy to light energy. b.) Incandescent light bulbs are very inefficient. Find the electric field strength and magnetic field strength assuming 5% efficiency. Please show all work, thank you!
The components of the electric field in an electromagnetic wave traveling in vacuum are described by...
The components of the electric field in an electromagnetic wave traveling in vacuum are described by Ex = 0, Ey = 0, and Ez = 2.84 sin(8.73x - ωt) V/m, where x is measured in meters and t in seconds. Calculate the frequency of the wave. Tries 0/99 Calculate the wavelength of the wave. Tries 0/99 Calculate the amplitude of the magnetic field of the wave. Tries 0/99 Calculate the intensity of the wave. Tries 0/99
if hall probe is not pointed exactly in the direction of the magnetic field, what does the reading represent?
if hall probe is not pointed exactly in the direction of the magnetic field, what does the reading represent? Sketch the magnetic field vector and the direction of the probe.  
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by the expression: B (r, t) = (10^−6 )[xˆ + 2yˆ + Bzzˆ] cos [ωt + 3x - y - z] in m.k.s.units and where xˆ, yˆ, zˆ are unit vectors along the cartesians axes . Find: (a) The propagation direction. (b) The wavelength λ. (c) The angular frequency ω. (d) The associated electrical field
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT