Find and solve a recurrence relation for the number of ways to stack n poker
chips using red, white and blue chips such that no two red chips are together.
Use your solution to compute the number of ways to stack 15 poker chips.
Solve the following recurrence relations. a. x(n) = x(n − 1) + 3
for n > 1, x(1) = 0 b. x(n) = 5x(n − 1) for n > 1, x(1) = 6
c. x(n) = x(n/5) + 1 for n > 1, x(1) = 1 (solve for n = 5k )
6. Solve the following recurrence relations
t(n) = t(n-1) + 3 for n>1
t(1) = 0
t(n) = t(n-1) + n for n>1
t(1) = 1
t(n) = 3t(n/2) + n for n>1, n is a power
of 2
t(1) = ½
t(n) = 6t(n-1) – 9t(n-2) for n>1
t(0) = 0 t(1) = 1
1- Show that (n^3+3n^2+3n+1) / (n+1) is O (n2 ). Use the
definition and proof of big-O notation.
2- Prove using the definition of Omega notation that either 8 n
is Ω (5 n ) or not.
please help be with both
Solve the recurrence equations by Substitution
a) T(n) = 4T (n/2) + n, T (1) = 1
b) T(n) = 4T (n/2) + n2 , T (1) = 1
c) T(n) = 4T (n/2) + n3 , T (1) = 1