Solution
Evaluate the following double integral by using change variables
(a) ∬R(x+y)dA,R">∬R(x+y)dA,R∬R(x+y)dA,R is the region bounded by y=x,y=x−2,y=−x">y=x,y=x−2,y=−xy=x,y=x−2,y=−x and y=2−x">y=2−x
y=2−x">
y=2−x">we have {T:S→R,(u,v)→(x(u,v),y(u,v))T−1:R→S,(x,y)→(u(x,y),v(x,y))">{T:S→R,(u,v)→(x(u,v),y(u,v))T−1:R→S,(x,y)→(u(x,y),v(x,y)){T:S→R,(u,v)→(x(u,v),y(u,v))T−1:R→S,(x,y)→(u(x,y),v(x,y)) {u=x−y⇒x=12u+12vv=x+y⇒y=−12u+12v">{u=x−y⇒x=12u+12vv=x+y⇒y=−12u+12v{u=x−y⇒x=12u+12vv=x+y⇒y=−12u+12v
y=2−x">Jaccobian determinant J2=∂(x,y)∂(u,v)=|∂x∂u∂x∂v∂y∂u∂y∂v|=|1212−1212|=12">J2=∂(x,y)∂(u,v)=∣∣ ∣∣∂x∂u∂x∂v∂y∂u∂y∂v∣∣ ∣∣=∣∣ ∣∣1212−1212∣∣ ∣∣=12J2=∂(x,y)∂(u,v)=|∂x∂u∂x∂v∂y∂u∂y∂v|=|1212−1212|=12
y=2−x">since S={(u,v)∈R2:u=0,u=2,v=0,v=2}">S={(u,v)∈R2:u=0,u=2,v=0,v=2}
y=2−x">S={(u,v)∈R2:u=0,u=2,v=0,v=2}">
y=2−x">S={(u,v)∈R2:u=0,u=2,v=0,v=2}">we have ∬R(x+y)dA=∫∫Sv|J2|dS=∫02∫0212vdvdu=∫02[14v2]02du=2">∬R(x+y)dA=∫∫Sv|J2|dS=∫20∫2012vdvdu=∫20[14v2]20du=2∬R(x+y)dA=∫∫Sv|J2|dS=∫02∫0212vdvdu=∫02[14v2]02du=2 y=2−x">S={(u,v)∈R2:u=0,u=2,v=0,v=2}">Therefore, ∬R(x+y)dA=2">∬R(x+y)dA=2
.