Question

In: Statistics and Probability

At a confidence level of 95% a confidence interval for a population proportion is determined to...

At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be

A. the same

B. narrower

C. wider

Solutions

Expert Solution

Option B is correct.

Intuitively this can be justified as:

More sample observations means more information regarding the population parameter, which is the population proportion here. Now as information increases the prediction regarding the parameter value is ought to be better. So the confidence interval with the same confidence coefficient always becomes narrower as the sample size increases.

Mathematically, we know that , confidence interval of population proportion for a given confidence coefficient is of this type(see picture below):

Z* is constant for the given confidence coefficient. Now as n increases, the right hand term decreases and hence the interval becomes more concentrated around . Thus the interval narrows down as sample size increases.

Hence option B is the only correct option.

Hope the solution helps. Thank you.


Related Solutions

At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be
Construct a 95​% confidence interval to estimate the population proportion with a sample proportion equal to...
Construct a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.45 and a sample size equal to 120. ----- A 95% confidence interval estimates that the population proportion is between a lower limit of ___ and an upper limit of ___ ????
1 - A 95% confidence interval for a population proportion was constructed using a sample proportion...
1 - A 95% confidence interval for a population proportion was constructed using a sample proportion from a random sample. Which of the following statements are correct? Select all that apply. A) We don't know if the 95% confidence interval actually does or doesn't contain the population proportion. B) The population proportion must lie in the 95% confidence interval. C) There is a 95% chance that the 95% confidence interval actually contains the population proportion. D) The sample proportion must...
A 95% confidence interval estimate for a population mean is determined to be between 94.25 and...
A 95% confidence interval estimate for a population mean is determined to be between 94.25 and 98.33 years. If the confidence interval is increased to 98%, the interval would become narrower remain the same become wider
QUESTION 10 What is the 95% confidence interval for the proportion of smokers in the population...
QUESTION 10 What is the 95% confidence interval for the proportion of smokers in the population (to 4 decimals)? QUESTION 8 Question 8-10 are based on the following information: The Centers for Disease Control reported the percentage of people 18 years of age and older who smoke (CDC website, December 14, 2014). Suppose that a study designed to collect new data on smokers and nonsmokers uses a preliminary estimate of the proportion who smoke of .35. How large a sample...
Determine the margin of error for a 95​% confidence interval to estimate the population proportion with...
Determine the margin of error for a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 for the following sample sizes. a. nequals100             b. nequals200             c. nequals250 LOADING... Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. a. The margin of error for a 95​% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 and sample size nequals100 is nothing. ​(Round...
Construct a confidence interval of the population proportion at the given level of confidence. x equals...
Construct a confidence interval of the population proportion at the given level of confidence. x equals x= 120 120​, n equals n= 1100 1100​, 90 90​% confidence
Construct a confidence interval of the population proportion at the given level of confidence. x =75,...
Construct a confidence interval of the population proportion at the given level of confidence. x =75, n = 150 , 90 % confidence.
Construct a confidence interval of the population proportion at the given level of confidence. x =75,...
Construct a confidence interval of the population proportion at the given level of confidence. x =75, n = 150 , 90 % confidence.
Construct a confidence interval of the population proportion at the given level of confidence. x =120​,...
Construct a confidence interval of the population proportion at the given level of confidence. x =120​, n =1100​, 90​% confidence
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT