Question

In: Physics

a) A block with a mass of 0.600 kg is connected to a spring, displaced in...

a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 20.0 cm from equilibrium is at t = 0.200 s.
What is the block's period of oscillation?

b) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 20.0 cm from equilibrium is at t = 0.200 s.
What is the the numerical value of the spring constant?
_______ N/m

c) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 20.0 cm from equilibrium is at t = 0.200 s.
What is the block’s velocity at t = 0.200 s? If the velocity is in the negative direction, include a minus sign.
_______ m/s

d) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 20.0 cm from equilibrium is at t = 0.200 s.
What is the block’s acceleration at t = 0.200 s? If the acceleration is in the negative direction, include a minus sign.
_______ m/s

Solutions

Expert Solution

PLEASE GIVE A THUMBS UP.


Related Solutions

A block of mass 1.59 kg is connected to a spring of spring constant 148 N/m...
A block of mass 1.59 kg is connected to a spring of spring constant 148 N/m which is then set into oscillation on a surface with a small coefficient of kinetic friction. The mass is pulled back 30.6 cm to the right and released. On the first right to left oscillation, the mass reaches 29.38 cm to the left. Part A What is the coefficient of friction? Part B To what distance does the mass return on the slide back...
The mass-spring-damper system has a 2 kg block is displaced by an amplitude of 50 mm...
The mass-spring-damper system has a 2 kg block is displaced by an amplitude of 50 mm and released. Ifthc phase angle ofrcsponse is 84.17o, how many cycles (m) will be executed beforc the amplitude is reduced to I mm. What are the undamped natural frequency m« and spring constant k ifthc period ofdamped oscillation rs is 0.3 scc.
A block of wood of mass 4 kg is connected to a spring, whose other end...
A block of wood of mass 4 kg is connected to a spring, whose other end is tethered to a wall. As the spring is stretched and compressed, the block undergoes simple harmonic motion on the (frictionless) floor. The displacement of the block with respect to its equilibrium position is x = 0.205 cos ( 22.5 t ) where x is measured in m and t is measured in seconds. 1.) Which of these statements is true at time t...
A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.600 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.90 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A block with mass M is connected to one end of a horizontal spring of constant...
A block with mass M is connected to one end of a horizontal spring of constant k, the other end of which is attached to the wall. The block moves with a simple harmonic motion on a frictionless surface. The amplitude of the harmonic motion is A1. When the block passes through the equilibrium position, a piece of plasticine, of mass m, is dropped vertically on the block and remains glued to it. Calculate the energy of the system in...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0...
a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0 N/m on a frictionless table. (i) At rest/At Equilibrium: The spring-mass system is at rest, the mass is at the equilibrium position. Calculate the potential energy (PEs), kinetic energy (KE) and total mechanical energy (Etot) of the spring-mass system. (ii) At rest/Displaced from Equilibrium: The mass is displaced 6 cm to the left (negative X-direction) by compressing the spring, the spring-mass system is at...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103 N/m. At time t = 1.40 s, the position and the velocity of the block are x = 0.150 m and v = 3.18 m/s respectively. What is the amplitude of oscillation? What was the position of the block at t = 0? What was the speed of the block at t = 0?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT