Question

In: Physics

a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0...

a. Consider a 1.5-kg mass of a block attached to a spring of spring constant 16.0 N/m on a frictionless table.

(i) At rest/At Equilibrium: The spring-mass system is at rest, the mass is at the equilibrium position. Calculate the potential energy (PEs), kinetic energy (KE) and total mechanical energy (Etot) of the spring-mass system.

(ii) At rest/Displaced from Equilibrium: The mass is displaced 6 cm to the left (negative X-direction) by compressing the spring, the spring-mass system is at rest at that position. Calculate the potential energy (PEs), kinetic energy (KE) and total mechanical energy (Etot) of the spring-mass system.

(iii) In motion/At Equilibrium: When the spring-mass system is released from - 6.0 cm position, it moves back to the equilibrium position. Calculate the potential energy (PEs), kinetic energy (KE), total mechanical energy (Etot) and velocity (v) of the spring-mass system as it reaches the equilibrium.

Solutions

Expert Solution


Related Solutions

A block with a mass of 0.488 kg is attached to a spring of spring constant...
A block with a mass of 0.488 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What is the amplitude of the oscillation? A block with a mass of 0.976 kg is attached to a spring of spring constant 428 N/m. It is sitting at equilibrium. You then pull the block down 5.10 cm from equilibrium and let go. What...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103...
A mass-spring oscillator consists of a 3.40-kg block attached to a spring of spring constant 103 N/m. At time t = 1.40 s, the position and the velocity of the block are x = 0.150 m and v = 3.18 m/s respectively. What is the amplitude of oscillation? What was the position of the block at t = 0? What was the speed of the block at t = 0?
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
A block of mass m = 2.6kg is attached to a single spring of spring constant...
A block of mass m = 2.6kg is attached to a single spring of spring constant k = 4.4Nmand allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is x=0m. At time t=0s the mass is at position x=2.7m and moving with x-component of velocity vx=−6.8ms. What is the x-component of velocity at time t=1.3s? Answer in meters per second.
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A 5 kg block is attached to a horizontally-mounted spring with a spring constant of 600...
A 5 kg block is attached to a horizontally-mounted spring with a spring constant of 600 J/m2. The spring is extended by 10 cm from its normal length and the block is then released with an additional pull that imparts an initial velocity of 50 cm/s. The angular velocity (in rad/s) is A rad/s. The phase shift or off set (in degrees) is B degrees. The amplitude (in cm) is C cm. Please highlight where the given mass, spring constant,...
A block with a mass of 2.00 kg is attached to a spring, undergoing a horizontal...
A block with a mass of 2.00 kg is attached to a spring, undergoing a horizontal simple harmonic motion with a period of 1.26 s. The initial speed of the block is 1.20 m/s when the spring is stretched by 25.0 cm. Let x = 0 at the equilibrium position. Ignore friction. a)Find the spring constant. b)Find the total energy of this object. c)Find the maximum displacement of the motion. d)Find the maximum speed. e)For the block, at what position...
A block with mass 5 kg is attached to the end of a horizontal spring with...
A block with mass 5 kg is attached to the end of a horizontal spring with spring constant 200N/m. The other end of the spring is attached to a wall. The spring is stretched 10cm in the positive directions from its equilibrium length. Assume that the block is resting on a frictionless surface. A) When the spring is fully stretched, what is the magnitude of the force from the spring on the block? B) We then release the block, letting...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT