Question

In: Statistics and Probability

Let x be the age in years of a licensed automobile driver. Let y be the...

Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 37% of all fatal accidents of 17-year-olds are due to speeding.

x 17,27,37,47,57,67,77

y 37,25,18,12,10,7,5

Complete parts (a) through (e), given Σx = 329, Σy = 114, Σx2 = 18,263, Σy2 = 2636, Σxy = 3958, and r ≈ −0.948.

(a) Draw a scatter diagram displaying the data.

(b) Verify the given sums Σx, Σy, Σx2, Σy2, Σxy and the value of the sample correlation coefficient r. (Round your value for r to three decimal places.)

Σx=

Σy=

Σx2=

Σy2=

Σxy=

r=

(c) Find x, and y. Then find the equation of the least-squares line  = a + bx. (Round your answers for x and y to two decimal places. Round your answers for a and b to three decimal places.)

x=

y=

y= +  x

(d) Graph the least-squares line. Be sure to plot the point (x, y) as a point on the line.

(e) Find the value of the coefficient of determination r2. What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares line? What percentage is unexplained? (Round your answer for r2 to three decimal places. Round your answers for the percentages to one decimal place.)

r2 =

explained    = %

unexplained  =  %

(f) Predict the percentage of all fatal accidents due to speeding for 45-year-olds. (Round your answer to two decimal places.)

=%

Solutions

Expert Solution

a.

b.

x y x^2 y^2 xy
17 37 289 1369 629
27 25 729 625 675
37 18 1369 324 666
47 12 2209 144 564
57 10 3249 100 570
67 7 4489 49 469
77 5 5929 25 385
Total 329 114 18263 2636 3958

X Values
∑ = 329
Mean = 47
∑(X - Mx)2 = SSx = 2800

Y Values
∑ = 114
Mean = 16.286
∑(Y - My)2 = SSy = 779.429

X and Y Combined
N = 7
∑(X - Mx)(Y - My) = -1400

R Calculation
r = ∑((X - My)(Y - Mx)) / √((SSx)(SSy))

r = -1400 / √((2800)(779.429)) = -0.948

c.

Sum of X = 329
Sum of Y = 114
Mean X = 47
Mean Y = 16.2857
Sum of squares (SSX) = 2800
Sum of products (SP) 6= -1400

Regression Equation = ŷ = bX + a

b = SP/SSX = -1400/2800 = -0.5

a = MY - bMX = 16.29 - (-0.5*47) = 39.786

ŷ = -0.5X + 39.786

d.

e. Here r= -0.948, so r^2=0.899

So explained variation is 89.8%

Unexplained variation is 10.2%

f. For x=45,

ŷ = (-0.5*45)+ 39.786=-5.21


Related Solutions

Let x be the age in years of a licensed automobile driver. Let y be the...
Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 36% of all fatal accidents of 17-year-olds are due to speeding. x 17 27 37 47 57 67 77 y 36 25 23 12 10 7 5 Complete parts (a) through (e), given Σx = 329, Σy = 118, Σx2 = 18,263, Σy2 =...
Let x be the age in years of a licensed automobile driver. Let y be the...
Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 36% of all fatal accidents involving 17-year-olds are due to speeding. x 17 27 37 47 57 67 77 y 36 25 20 12 10 7 5 Find the sample mean for x (round to the nearest whole number) Find the sample mean for...
Let x be the age in years of a licensed automobile driver. Let y be the...
Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 34% of all fatal accidents of 17-year-olds are due to speeding. x 17 27 37 47 57 67 77 y 34 22 22 12 10 7 5 Complete parts (a) through (e), given Σx = 329, Σy = 112, Σx2 = 18,263, Σy2 =...
Let x be the age in years of a licensed automobile driver. Let y be the...
Let x be the age in years of a licensed automobile driver. Let y be the percentage of all fatal accidents (for a given age) due to speeding. For example, the first data pair indicates that 39% of all fatal accidents of 17-year-olds are due to speeding. x 17 27 37 47 57 67 77 y 39 25 19 12 10 7 5 Complete parts (a) through (d), given Σx = 329, Σy = 117, Σx2 = 18,263, Σy2 =...
Let x be the age of a licensed driver in years. Let y be the percentage...
Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way. x 37 47 57 67 77 87 y 5 8 10 13 31 41 Complete parts (a) through (e), given Σx =...
Let x be the age of a licensed driver in years. Let y be the percentage...
Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way. x 37 47 57 67 77 87 y 5 8 10 18 31 46 Complete parts (a) through (e), given Σx =...
Let x be the age of a licensed driver in years. Let y be the percentage...
Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way. x 37 47 57 67 77 87 y 5 8 10 17 32 46 Complete parts (a) through (e), given Σx =...
Let x be the age of a licensed driver in years. Let y be the percentage...
Let x be the age of a licensed driver in years. Let y be the percentage of all fatal accidents (for a given age) due to failure to yield the right of way. For example, the first data pair states that 5% of all fatal accidents of 37-year-olds are due to failure to yield the right of way. x 37 47 57 67 77 87 y 5 8 10 18 29 42 Complete parts (a) through (e), given Σx =...
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Let x = age in years of a rural Quebec woman at the time of her...
Let x = age in years of a rural Quebec woman at the time of her first marriage. In the year 1941, the population variance of x was approximately σ2 = 5.1. Suppose a recent study of age at first marriage for a random sample of 51 women in rural Quebec gave a sample variance s2 = 2.8. Use a 5% level of significance to test the claim that the current variance is less than 5.1. Find a 90% confidence...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT