Question

In: Math

Consider the following all-integer linear program: Max x1 + x2 s.t. 4x1 + 6x2 ≤ 22...

Consider the following all-integer linear program:

Max

x1 + x2

s.t.

4x1 + 6x2 ≤ 22

x1 + 5x2 ≤ 15

2x1 + x2 ≤ 9

  x1, x2 ≥ 0 and integer

  1. Solve the LP Relaxation of this problem.
    The optimal solution to the LP Relaxation is x1 = ___, x2 = .____________

    Its value is ___________
  2. Find the optimal integer solution.
    The optimal solution to the LP Relaxation is x1 = _____x2 = __________
    Its value is _______

Solutions

Expert Solution


Related Solutions

3. Consider the following all-integer linear program: Max 1x1+1x2 s.t. 4x1+6x2 ?22 1x1+5x2 ?15 2x1+1x2 ?9...
3. Consider the following all-integer linear program: Max 1x1+1x2 s.t. 4x1+6x2 ?22 1x1+5x2 ?15 2x1+1x2 ?9 x1, x2 ?0 and integer a. Graph the constraints for this problem. Use dots to indicate all feasible integer solutions. b. Solve the LP Relaxation of this problem. c. Find the optimal integer solution.
Consider the following all-integer linear program: Max 5x1 +8x2 s.t.   6x1 + 5x2 <= 30 9x1...
Consider the following all-integer linear program: Max 5x1 +8x2 s.t.   6x1 + 5x2 <= 30 9x1 + 4x2 <= 36 1x1 + 2x2 <=10 x1, x2 $ 0 and integer a. Graph the constraints for this problem. Use dots to indicate all feasible integer solutions. b. Find the optimal solution to the LP Relaxation. Round down to find a feasible integer solution. c. Find the optimal integer solution. Is it the same as the solution obtained in part (b) by...
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A +...
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤ 300    8A + 7B ≤ 168 10A + 14B ≤ 280    Solve this linear program graphically and determine the optimal quantities of A, B, and the    value of Z. Show the optimal area.
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1...
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1 + x2 ≤ 5 2x1 + x2 ≤ 7 2x2 + x3 ≥ 6 x1 + x3 = 4 x1 ≥ 0, x2, x3 free
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤...
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤ 300    8A + 7B ≤ 168   10A + 14B ≤ 280    Solve this linear program graphically and determine the optimal quantities of A, B, and the    value of Z. Show the optimal area.
Consider the following linear program: Max 4A + 6B s.t. 9A + 3B ≥ 20 3A...
Consider the following linear program: Max 4A + 6B s.t. 9A + 3B ≥ 20 3A + 5B ≤ 15 2A ≤ 6 A, B ≥ 0
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 +...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 + X2 ≤ 6                             X1 - X2 ≥ 3                            -X1 + 2X2 ≥ 2                            X1, X2 ≥ 0
Solve the following problems using the two phase method: max 3x1 + x2 S.t. x1 −...
Solve the following problems using the two phase method: max 3x1 + x2 S.t. x1 − x2 ≤ −1 −x1 − x2 ≤ −3 2x1 + x2 ≤ 4 x1, x2 ≥ 0 Please show all steps
3. Consider the following linear program: MIN 6x1 + 9x2 ($ cost) s.t. x1 +2x2 ≤8...
3. Consider the following linear program: MIN 6x1 + 9x2 ($ cost) s.t. x1 +2x2 ≤8 10x1 + 7.5x2 ≥ 30 x2 ≥ 2 x1,x2 ≥0 The Management Scientist provided the following solution output: OPTIMAL SOLUTION Objective Function Value = 27.000 Variable Value Reduced Cost X1 1.500 0.000 X2 2.000 0.000 Constraint Slack/Surplus Dual Price 1 2.500 0.000 2 0.000 −0.600 3 0.000 −4.500 OBJECTIVE COEFFICIENT RANGES Variable Lower Limit Current Value Upper Limit X1 0.000 6.000 12.000 X2 4.500...
Consider the following LOP P. Max. z = 212x1 −320x2 +273x3 −347x4 +295x5 s.t. −4x1 −2x3...
Consider the following LOP P. Max. z = 212x1 −320x2 +273x3 −347x4 +295x5 s.t. −4x1 −2x3 +8x5 ≤ −22 2x1 +3x2 −x4 = 31 −5x2 +3x3 −2x5 ≤ 27 −7x1 −8x3 +6x4 = −38 −9x3 −2x4 +x5 ≤ −40 −x2 −3x4 −5x5 ≤ 42 & x1, x3, x4 ≥ 0 a. Find x∗ and write the Phase 0, I and II pivots that solve P. b. Use the General Complementary Slackness Theorem to find the optimal certificate y∗ [do not...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT