Question

In: Math

Consider the following LOP P. Max. z = 212x1 −320x2 +273x3 −347x4 +295x5 s.t. −4x1 −2x3...

Consider the following LOP P.
Max. z = 212x1 −320x2 +273x3 −347x4 +295x5
s.t. −4x1 −2x3 +8x5 ≤ −22
2x1 +3x2 −x4 = 31
−5x2 +3x3 −2x5 ≤ 27
−7x1 −8x3 +6x4 = −38
−9x3 −2x4 +x5 ≤ −40
−x2 −3x4 −5x5 ≤ 42
& x1, x3, x4 ≥ 0
a. Find x∗ and write the Phase 0, I and II pivots that solve P.
b. Use the General Complementary Slackness Theorem to find
the optimal certificate y∗
[do not solve the dual LOP D!].

Solutions

Expert Solution


Related Solutions

Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1...
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1 + x2 ≤ 5 2x1 + x2 ≤ 7 2x2 + x3 ≥ 6 x1 + x3 = 4 x1 ≥ 0, x2, x3 free
Consider the following all-integer linear program: Max x1 + x2 s.t. 4x1 + 6x2 ≤ 22...
Consider the following all-integer linear program: Max x1 + x2 s.t. 4x1 + 6x2 ≤ 22 x1 + 5x2 ≤ 15 2x1 + x2 ≤ 9   x1, x2 ≥ 0 and integer Solve the LP Relaxation of this problem. The optimal solution to the LP Relaxation is x1 = ___, x2 = .____________ Its value is ___________ Find the optimal integer solution. The optimal solution to the LP Relaxation is x1 = _____x2 = __________ Its value is _______
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A +...
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤ 300    8A + 7B ≤ 168 10A + 14B ≤ 280    Solve this linear program graphically and determine the optimal quantities of A, B, and the    value of Z. Show the optimal area.
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤...
Consider the following linear program:    MAX Z = 25A + 30B    s.t. 12A + 15B ≤ 300    8A + 7B ≤ 168   10A + 14B ≤ 280    Solve this linear program graphically and determine the optimal quantities of A, B, and the    value of Z. Show the optimal area.
3) (15 pts) Consider the following LP formulation: max z = x1 + 2x2 s.t. −...
3) (15 pts) Consider the following LP formulation: max z = x1 + 2x2 s.t. − x1 + x2 ≤ 2 x2 ≤ 3 kx1 + x2 ≤ 2k + 3 x1, x2 ≥ 0 The value of the parameter k ≥ 0 has not been determined yet. The solution currently being used is x1 = 2, x2 = 3. Use graphical analysis to determine the values of k such that this solution is actually optimal.
3. Consider the following all-integer linear program: Max 1x1+1x2 s.t. 4x1+6x2 ?22 1x1+5x2 ?15 2x1+1x2 ?9...
3. Consider the following all-integer linear program: Max 1x1+1x2 s.t. 4x1+6x2 ?22 1x1+5x2 ?15 2x1+1x2 ?9 x1, x2 ?0 and integer a. Graph the constraints for this problem. Use dots to indicate all feasible integer solutions. b. Solve the LP Relaxation of this problem. c. Find the optimal integer solution.
Max Z = 6x1 + 10x2+9x3 + 20x4 st 4x1 + 9x2 + 7x3 + 10x4...
Max Z = 6x1 + 10x2+9x3 + 20x4 st 4x1 + 9x2 + 7x3 + 10x4 = 600 x1 + x2 +3x3 + 40x4 = 400 3x1 + 4x2 + 2x3 + x4 = 500 x1,x2,x3,x4 ≥ 0 Which variables are basic in the optimal solution? Explain.
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 −...
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 − 3x2 − x3 + x4 ≤ 0 − x1 + 2x2 + 2x3 − 3x4 ≤ 1 − x1 + x2 − 4x3 + x4 ≤ 8 x1, x2, x3, x4 ≥ 0 Use the Simplex method to verify that the optimal objective value is unbounded. Make use of the final tableau to construct an unbounded direction..
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+...
     Consider the following problem     Maximize Z=2x1 + 5x2 + x3 subject to                4x1+ 2x2 + x3 ≤ 6                 x1 + x2 ≤ 2                 xi ≥ 0 for i=1,2,3 a. Inserting slack variables, construct the initial simplex tableau. What is the initial basic feasible solution? b. What is the next non-basic variable to enter the basis c. Using the minimum ratio rule, identify the basic variable to leave the basis. d. Using elementary row operations, find...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3 ? 430 (Operation 1) 3x1 + 2x3 ? 460 (Operation 2) x1 + 4x2 ? 420 (Opeartion 3 ) x1, x2, x3 ?0 Optimal tableau is given below: basic x1 x2 x3 x4 x5 x6 solution z 4 0 0 1 2 0 1350 x2 -1/4 1 0 1/2 -1/4 0 100 x3 3/2 0 1 0 1/2 0 230 x6 2 0 0...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT