Question

In: Physics

Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each...

Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing opposite the midpoint between the speakers and is initially 35.0 m from the midpoint. As she slowly walks parallel to the line connecting the speakers, at what angle θ (relative to the centerline coming outward from the midpoint between the speakers) will she first hear no sound?

Solutions

Expert Solution

There is an interference phenomenon (for acoustic waves) appearing in the room.

The condition for obtaining a minimum on the "observation screen" (the woman's ear) is:

k=an integer

The wavelength:

The small angle approximation [] cannot be used because the distances are too large.

The first minimum corresponds to k=0:

The next minimum is obtained for:

etc...

The woman is at an angle:

[Suppose she's coming from a larger angle than that corresponding to the first minimum/maximum.]

FROM NOW ON:

- I don't understand what 35 m represents: is it delta(y)? Is it L? From the text is not very clear, and also no figure is provided.

What I can do:

With theta(w) determined from eq.(1), replace it in eq.(2) and find k. It will be, probably, not an integer. The angle that the problem asks about is that corresponding to the first k integer smaller than k obtained from eq.(2).

So, take that k, replace in eq.(2) and find the angle.


Related Solutions

Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with...
Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with frequency 170HZ. Find the distance from the center point to the nearest point where totally destructive interference occurs.
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m are spaceced 5.00 m from eachother. At what minimal distance (in m) from one of them should an observer stand to hear almost nothing (the first minimum)(__________)? The first maximum after this minimum (__________)? Second minimum (__________)? Second maximum (__________)? Third minimum (__________)? Third maximum (__________)? How many minima overall can be observed (__________)? How many maxima (__________)?
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency...
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency of 775 Hz. The speed of sound is 340 m/s. An observer starts 5m away from one of the speakers at a point along the perpendicular to the line connecting the two speakers, and moves away from the speakers along that line. a) How much distance separates the second and the third interference minima they hear? b) Do you expect the intensity at the...
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other.
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other. A listener walks in a circle of radius greater than 1 m centered on the midpoint of the two speakers. At how many points does the listener observe destructive interference? The listener and the speakers are all in the same horizontal plane and the speed of sound is 340 m/s....
The two speakers are placed 37.2 cm apart. A single oscillator makes the speakers vibrate in...
The two speakers are placed 37.2 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 2.02 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s.) maximum intensities: (List smallest angle first.) θ1max =  ° θ2max =  ° θ3max =  ° minimum intensities: (List smallest angle first.) θ1min =  ° θ2min =  °
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where...
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where the speed of sound is 340m/s . A woman starts out at the midpoint between the two speakers. The room
1. Two parallel wires with a length of 1.4 m each are placed 0.06 m apart....
1. Two parallel wires with a length of 1.4 m each are placed 0.06 m apart. One wire carries a current of 18.5 A and another wire carries a current of 31.9 A. Find the absolute value of the magnetic force acting on each wire. 2.What is a magnetic force acting on a charged particle of charge 6.4 x 10-6 C moving with the velocity of 4.8x105 m/s perpendicularly to the magnetic field of 6 T? 3.What is a magnetic...
Two small nonconducting spheres have a total charge of 93.6μC. When placed 1.09 m apart, the...
Two small nonconducting spheres have a total charge of 93.6μC. When placed 1.09 m apart, the force each exerts on the other is 10.9 N and is repulsive. 1. What is the (larger) charge on the spheres? 2. What is the (smaller) charge on the other sphere? 3. What if the force were attractive? What is the larger charge on one of the spheres? 4. What is the smaller charge on the sphere?
Two small speakers A and B are driven in step at 730 Hz by the same...
Two small speakers A and B are driven in step at 730 Hz by the same audio oscillator. These speakers both start out 4.50 mfrom the listener, but speaker A is slowly moved away. (See the figure (Figure 1) ). The speed of sound in air is 344 m/s . A. At what distance d will the sound from the speakers first produce destructive interference at the location of the listener? B. If A keeps moving, at what distance d...
Two 1.8 kg masses are 1.2 m apart (center to center) on a frictionless table. Each...
Two 1.8 kg masses are 1.2 m apart (center to center) on a frictionless table. Each has +10 μC of charge. a.) What is the magnitude of the electric force on one of the masses? b.) What is the initial acceleration of the mass if it is released and allowed to move?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT