Question

In: Physics

Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency...

Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency of 775 Hz. The speed of sound is 340 m/s. An observer starts 5m away from one of the speakers at a point along the perpendicular to the line connecting the two speakers, and moves away from the speakers along that line.

a) How much distance separates the second and the third interference minima they hear?

b) Do you expect the intensity at the sound minimum to be zero?

c) One of the speakers is now turned off, 15 W of power are measured going through an opening that is 3mm in diameter, 2.1 m away from the other speaker, what is sound level 3 m away from that speaker.

d) A 120 students in a classroom produce a sound level of 60 dB, what sound level will 90 students produce?

e) You are diving at 20m/s behind a truck moving at 15 m/s, you are both heading south. The truck engine emits a strange noise at 390 Hz, what frequency do you hear if the wind is blowing due north at 30 m/s.

Solutions

Expert Solution


Related Solutions

Two point source three meter apart are driven by the same oscillator at a frequency of...
Two point source three meter apart are driven by the same oscillator at a frequency of 800 hz. The sources emit energy in the form of spherical waves. An observer initially hears a maximum at a distance 10 m along the perpendicular bisector of the line joining the two sources. What distance (in m) must observer move along a line parallel to the line joining the two sources before reaching a minimum intensity? (Assume the speed of sound is 343...
Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each...
Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing opposite the midpoint between the speakers and is initially 35.0 m from the midpoint. As she slowly walks parallel to the line connecting the speakers, at what angle θ (relative to the centerline coming outward from the midpoint between the speakers) will...
Two loudspeakers 6.0 m apart are playing the same frequency. If you stand 10.0 m in...
Two loudspeakers 6.0 m apart are playing the same frequency. If you stand 10.0 m in front of the plane of the speakers, centered between them, you hear a sound of maximum intensity. As you walk parallel to the plane of the speakers, staying 10.0 m in front of them, you first hear a minimum of sound intensity when you are directly in front of one of the speakers. PART A What is the frequency of the sound? Assume a...
Two small speakers A and B are driven in step at 730 Hz by the same...
Two small speakers A and B are driven in step at 730 Hz by the same audio oscillator. These speakers both start out 4.50 mfrom the listener, but speaker A is slowly moved away. (See the figure (Figure 1) ). The speed of sound in air is 344 m/s . A. At what distance d will the sound from the speakers first produce destructive interference at the location of the listener? B. If A keeps moving, at what distance d...
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other.
Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other. A listener walks in a circle of radius greater than 1 m centered on the midpoint of the two speakers. At how many points does the listener observe destructive interference? The listener and the speakers are all in the same horizontal plane and the speed of sound is 340 m/s....
Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with...
Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with frequency 170HZ. Find the distance from the center point to the nearest point where totally destructive interference occurs.
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where...
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where the speed of sound is 340m/s . A woman starts out at the midpoint between the two speakers. The room
Two small speakers A and B are driven in step at 720Hz by the same audio oscillator
Two small speakers A and B are driven in step at 720Hz by the same audio oscillator. These speakers both start out 4.50m from the listener, but speaker Ais slowly moved away.Part A:At what distance d will the sound from the speakers first produce destructive interference at the location of the listener?Part B:If A keeps moving, at what distance d will the speakers next produce destructive interference at the listener?Part C:After A starts moving away, at what distance will the...
The two speakers are placed 37.2 cm apart. A single oscillator makes the speakers vibrate in...
The two speakers are placed 37.2 cm apart. A single oscillator makes the speakers vibrate in phase at a frequency of 2.02 kHz. At what angles, measured from the perpendicular bisector of the line joining the speakers, would a distant observer hear maximum sound intensity? Minimum sound intensity? (Take the speed of sound to be 340 m/s.) maximum intensities: (List smallest angle first.) θ1max =  ° θ2max =  ° θ3max =  ° minimum intensities: (List smallest angle first.) θ1min =  ° θ2min =  °
(numbers 20-21) Two speakers emit the same pure tone (sound of a single frequency) and are...
(numbers 20-21) Two speakers emit the same pure tone (sound of a single frequency) and are in phase. 20. An observer begins at the center point between the speakers and slowly moves toward one of the speakers. The second very quiet spot encountered (completely destructive interference) is 1.5 m from the center. What is the wavelength of the sound? a) 1.0 m b) 1.5 m c) 2.0 m d) 2.5 m e) 3.0 m 21. If the distance between the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT