Question

In: Physics

Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other.

Two speakers spaced a distance 1.5 m apart emit coherent sound waves at a frequency of 680 Hz in all directions. The waves start out in phase with each other. A listener walks in a circle of radius greater than 1 m centered on the midpoint of the two speakers. At how many points does the listener observe destructive interference? The listener and the speakers are all in the same horizontal plane and the speed of sound is 340 m/s. Experiments like this must be done in a special room so that reflections are negligible.


Solutions

Expert Solution

Speed of the sound wave v = 340 m/s

Frequency of the sound wave f = 680 Hz

Distance between the speakers d = 1.5 m

 

The wavelength of the sound wave is

λ = v/f

   = (340 m/s) / 680 Hz

   = 0.5 m

 

For destructive interference, the path difference between the two sound waves is odd multiple of half wavelength. Path difference that causes destructive interference is

 

⇒ nλ/2  where n = 1, 3, 5, …..

⇒ 0.25m, 0.75m, 1.25m,

 

The number of occurrence of destructive interference in one quadrant of the circle is 3. The listener when moves in one complete circle, the number of occurrence of destructive interference are 4(quadrants in a circle) × 3 = 12. 

 

At 12 points the listener finds the destructive interference in a circle.


At 12 points the listener finds the destructive interference in a circle.

Related Solutions

Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m are spaceced 5.00 m from eachother. At what minimal distance (in m) from one of them should an observer stand to hear almost nothing (the first minimum)(__________)? The first maximum after this minimum (__________)? Second minimum (__________)? Second maximum (__________)? Third minimum (__________)? Third maximum (__________)? How many minima overall can be observed (__________)? How many maxima (__________)?
Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with...
Two speakers are facing each other, 4.00 meters apart, in phase and playing a sound with frequency 170HZ. Find the distance from the center point to the nearest point where totally destructive interference occurs.
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one...
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one speaker be placed behind the other for the sound to have an amplitude 1.90 times that of each speaker alone?
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where...
Two speakers that are 16.0m apart produce sound waves of frequency 270Hz in a room where the speed of sound is 340m/s . A woman starts out at the midpoint between the two speakers. The room
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency...
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency of 775 Hz. The speed of sound is 340 m/s. An observer starts 5m away from one of the speakers at a point along the perpendicular to the line connecting the two speakers, and moves away from the speakers along that line. a) How much distance separates the second and the third interference minima they hear? b) Do you expect the intensity at the...
Two loudspeakers, 1.1 mm apart, emit sound waves with the same frequency along the positive xx-axis....
Two loudspeakers, 1.1 mm apart, emit sound waves with the same frequency along the positive xx-axis. Victor, standing on the axis to the right of the speakers, hears no sound. As the frequency is slowly tripled, Victor hears the sound go through the sequence loud-soft-loud-soft-loud before becoming quiet again. What was the original sound frequency? Assume room temperature of 20∘C∘C. Express your answer with the appropriate units. please write the answer neatly, another post similar to this one was difficult...
Two speakers face each other, and they each emit a sound of wavelength (lambda). One speaker...
Two speakers face each other, and they each emit a sound of wavelength (lambda). One speaker is 180 (degrees) out of phase with respect to the other. If we separate the speakers by a distance1.5 (lambda),how far from the left-most speaker should we place a microphone in order to pick up the loudest sound? Ignore reflections from nearby surfaces. Select all that apply. 3/4 lambda 0  lambda 1/2  lambda 1/4  lambda   1     lambda  
Two in-phase loudspeakers, which emit sound in all directions, are sitting side by side. One of...
Two in-phase loudspeakers, which emit sound in all directions, are sitting side by side. One of them is moved sideways by 3.0 m, then forward by 7.0 m. Afterward, constructive interference is observed 14, 12, and 34 the distance between the speakers along the line that joins them, and at no other positions along this line. What is the maximum possible wavelength of the sound waves? Express your answer with the appropriate units.
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has an output of 1.30 mW, and speaker B has an output of 1.60 mW. Two speakers A and B are represented as points which serve as the centers of concentric circles representing sound waves emanating from the speakers. The concentric circles about speaker A are spaced more closely together than the concentric circles about speaker B. The points lie along a horizontal line, and...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has...
Two small loudspeakers emit sound waves of different frequencies equally in all directions. Speaker A has an output of 1.30 mW, and speaker B has an output of 1.90 mW. Two speakers A and B are represented as points which serve as the centers of concentric circles representing sound waves emanating from the speakers. The concentric circles about speaker A are spaced more closely together than the concentric circles about speaker B. The points lie along a horizontal line, and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT