Question

In: Advanced Math

Type a proposition involving p, q, r and s that is true just when at least...

Type a proposition involving p, q, r and s that is true just when at least two of the propositional variables are true. For example, your proposition would be true in any case for which p and r are both true but false when, say, p is true while q, r and s are all false.

Solutions

Expert Solution

But we need the proposition involving the variables p,q,r & s that is true when atleast two of the variables are true.

We can make the desired proposition by using .

Since we desire atleast two of variables true.Let us make every possible pair of all of the variables.Since is true when both p and q are true.Using this "tone" we can make the pro​​​​position,

Since,in this proposition, suppose if only 'p' variable is true and other variables are false,then will give result in False with every variables other than p.So resulting proposition P will be false.

If any two of the proposition will be true,(Suppose 'r' and 's' are true) then   will give us result True.So the Compound proposition P will be true.So Our required proposition is

which will is True when atleast two of the variable are true.


Related Solutions

Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t}...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t} and B = {r, s, t, u} are events. x p q r s t u p(x) 0.15 0.25 0.2 0.15 0.1 (a) Determine what must be p(s). (b) Find p(A), p(B) and p(A∩B). (c) Determine whether A and B are independent. Explain. (d) Arer A and B mutually exclusive? Explain. (e) Does this table represent a probability istribution of any random variable? Explain.
Q1) Determine whether each of the compound proposition is satisfiable. (p ∨ q ∨ r) ∧...
Q1) Determine whether each of the compound proposition is satisfiable. (p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧ (¬p ∨ r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s) Q2) Negate the following statements, no negation symbol before quantifiers. 1) ∃x∃y(Q(x, y) ↔ Q(y, x)) 2) ∀y∃x∃z(T (x, y, z) ∨ Q(x,...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
1)  Recall, a truth table for a proposition involving propositional symbols p and q uses four rows...
1)  Recall, a truth table for a proposition involving propositional symbols p and q uses four rows for the cases p true, q true, p true, q false, p false, q true and p false, q false (in that order). For example  the outcome for p v ¬q  is  T, T, F, T  since the expression is only false when q is true but p is false. Of course, we have the same outcome for any logically equivalent proposition including ¬(¬p ∧ q), (¬p ∧...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.
A list of six positive integers, p, q, r, s, t, u satisfies p < q...
A list of six positive integers, p, q, r, s, t, u satisfies p < q < r < s < t < u. There are exactly 15 pairs of numbers that can be formed by choosing two different numbers from this list. The sums of these 15 pairs of numbers are: 25, 30, 38, 41, 49, 52, 54, 63, 68, 76, 79, 90, 95, 103, 117. Which sum equals r + s?
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Please explain why and how the following are true. I. p ⇒(q∧r) is equivalent to (p...
Please explain why and how the following are true. I. p ⇒(q∧r) is equivalent to (p ⇒q)∧(p ⇒r) II. Let p(x) and p(x) be defined on an random/arbitrary universe of discourse. Why, in words, is (∀x)[p(x) ∧ q(x)] equivalent to[(∀x)p (x)] ∧ [(∀x)q(x)]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT