In: Computer Science
Discrete math question
Prove that
¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Given ¬(q  
 p)
 (p
q
s  
 r)
p  
Contradiction
Take L.H.S 
¬(q  
 p)
 (p
q
s  
 r)
 p
 ¬(¬q V p)
 [¬(p
q
s) V
r] 
p    { Law of Implies (P
Q)
= ¬PVQ }
 [¬(¬q) 
 ¬p]
 [(¬p V ¬q V ¬s)
V r] 
p    {By De Morgan's law ¬ (P 
 Q) = ¬P V ¬Q || ¬ (P V Q) = ¬P 
 ¬Q }
 [q 
 ¬p]
 [(¬p V ¬q V ¬s)
V r] 
p    {By De Morgan's law ¬ (¬P) = P
}
 [q 
 ¬p]
 [(¬q V ¬p V ¬s)
V r] 
p   {Commutative law (P V Q) = (Q V P)}
 [q 
 ¬q]
 [(¬p V ¬p) V ¬s
V r] 
p   {Commutative law (P 
 Q) = (Q 
 P)}
 [q 
 ¬q]
 [¬p V (¬s V r)]
 p
   { we know that A V A = A }
 [q 
 ¬q]
 [¬p V p]
 (¬s V
r)   {Commutative law (P 
 Q) = (Q 
 P)}
 [F] 
 [T]
 (¬s V
r)  { we know that P 
 ¬P = F & P V
¬P = T }
 [F] 
 ¬s
 (T V
r)   {Commutative law (P 
 Q) = (Q 
 P)}
 [F
 ¬s]
 (T V
r)   {Associative law (P 
 Q) 
 R = P
(Q 
 R)}
 [F] 
 (T)
{ we know that F 
 ¬P = F & A V
T = T }
 [F 
 T
]  {Associative law (P 
 Q) 
 R = P
(Q 
 R)}
[F]   { we know that T 
 F = F
}
Contradiction
R.H.S
L.H.S 
R.H.S
So ¬(q  
 p)
 (p
q
s  
 r)
 p  is
a Contradiction