In: Computer Science
Discrete math question
Prove that
¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Given ¬(q p)
(p
q
s
r)
p
Contradiction
Take L.H.S
¬(q
p)
(p
q
s
r)
p
¬(¬q V p)
[¬(p
q
s) V
r]
p { Law of Implies (P
Q)
= ¬PVQ }
[¬(¬q)
¬p]
[(¬p V ¬q V ¬s)
V r]
p {By De Morgan's law ¬ (P
Q) = ¬P V ¬Q || ¬ (P V Q) = ¬P
¬Q }
[q
¬p]
[(¬p V ¬q V ¬s)
V r]
p {By De Morgan's law ¬ (¬P) = P
}
[q
¬p]
[(¬q V ¬p V ¬s)
V r]
p {Commutative law (P V Q) = (Q V P)}
[q
¬q]
[(¬p V ¬p) V ¬s
V r]
p {Commutative law (P
Q) = (Q
P)}
[q
¬q]
[¬p V (¬s V r)]
p
{ we know that A V A = A }
[q
¬q]
[¬p V p]
(¬s V
r) {Commutative law (P
Q) = (Q
P)}
[F]
[T]
(¬s V
r) { we know that P
¬P = F & P V
¬P = T }
[F]
¬s
(T V
r) {Commutative law (P
Q) = (Q
P)}
[F
¬s]
(T V
r) {Associative law (P
Q)
R = P
(Q
R)}
[F]
(T)
{ we know that F
¬P = F & A V
T = T }
[F
T
] {Associative law (P
Q)
R = P
(Q
R)}
[F] { we know that T
F = F
}
Contradiction
R.H.S
L.H.S
R.H.S
So ¬(q p)
(p
q
s
r)
p is
a Contradiction