Question

In: Computer Science

Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table

Discrete math question

Prove that

¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table

Solutions

Expert Solution

Given ¬(q   p) (pqs   r) p   Contradiction

Take L.H.S ¬(q   p) (pqs   r) p

¬(¬q V p) [¬(pqs) V r] p    { Law of Implies (PQ) = ¬PVQ }

[¬(¬q) ¬p] [(¬p V ¬q V ¬s) V r] p    {By De Morgan's law ¬ (P Q) = ¬P V ¬Q || ¬ (P V Q) = ¬P ¬Q }

[q ¬p] [(¬p V ¬q V ¬s) V r] p    {By De Morgan's law ¬ (¬P) = P }

[q ¬p] [(¬q V ¬p V ¬s) V r] p   {Commutative law (P V Q) = (Q V P)}

[q ¬q] [(¬p V ¬p) V ¬s V r] p   {Commutative law (P Q) = (Q P)}

[q ¬q] [¬p V (¬s V r)] p    { we know that A V A = A }

[q ¬q] [¬p V p] (¬s V r)   {Commutative law (P Q) = (Q P)}

[F] [T] (¬s V r)  { we know that P ¬P = F & P V ¬P = T }

[F] ¬s (T V r)   {Commutative law (P Q) = (Q P)}

[F ¬s] (T V r)   {Associative law (P Q) R = P (Q R)}

[F] (T) { we know that F ¬P = F & A V T = T }

[F T ]  {Associative law (P Q) R = P (Q R)}

[F]   { we know that T F = F }

Contradiction

R.H.S

L.H.S R.H.S

So ¬(q   p) (pqs   r) p  is a Contradiction


Related Solutions

Prove or disprove using a Truth Table( De Morgan's Law) ¬(p∧q) ≡ ¬p∨¬q
Prove or disprove using a Truth Table( De Morgan's Law) ¬(p∧q) ≡ ¬p∨¬q Show the Truth Table for (p∨r) (r→¬q)
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Construct a truth table for the statement [q∨(~r∧p)]→~p. Complete the truth table below by filling in...
Construct a truth table for the statement [q∨(~r∧p)]→~p. Complete the truth table below by filling in the blanks. (T or F) p q r ~r ~r∧p q∨(~r∧p) ~p [q∨(~r∧p)]→~p T T T T T F T F T T F F
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
Write a C++ program to construct the truth table of P ∨¬(Q ∧ R) If you...
Write a C++ program to construct the truth table of P ∨¬(Q ∧ R) If you could include comments to explain the code that would be much appreciated!!! :) Thank you so much!
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
write a program that will print a truth table for p ^ ~q. Using C++ please.
write a program that will print a truth table for p ^ ~q. Using C++ please.
Using a truth table determine whether the argument form is valid or invalid p ∧ q...
Using a truth table determine whether the argument form is valid or invalid p ∧ q →∼ r p∨∼q ∼q→p ∴∼ r
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t}...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t} and B = {r, s, t, u} are events. x p q r s t u p(x) 0.15 0.25 0.2 0.15 0.1 (a) Determine what must be p(s). (b) Find p(A), p(B) and p(A∩B). (c) Determine whether A and B are independent. Explain. (d) Arer A and B mutually exclusive? Explain. (e) Does this table represent a probability istribution of any random variable? Explain.
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there...
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there exists a point x_0 ∈ S which is “closest” to p. That is, prove that there exists x0 ∈ S such that |x_0 − p| is minimal.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT