In: Computer Science
Discrete math question
Prove that
¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Given ¬(q p) (pqs r) p Contradiction
Take L.H.S ¬(q p) (pqs r) p
¬(¬q V p) [¬(pqs) V r] p { Law of Implies (PQ) = ¬PVQ }
[¬(¬q) ¬p] [(¬p V ¬q V ¬s) V r] p {By De Morgan's law ¬ (P Q) = ¬P V ¬Q || ¬ (P V Q) = ¬P ¬Q }
[q ¬p] [(¬p V ¬q V ¬s) V r] p {By De Morgan's law ¬ (¬P) = P }
[q ¬p] [(¬q V ¬p V ¬s) V r] p {Commutative law (P V Q) = (Q V P)}
[q ¬q] [(¬p V ¬p) V ¬s V r] p {Commutative law (P Q) = (Q P)}
[q ¬q] [¬p V (¬s V r)] p { we know that A V A = A }
[q ¬q] [¬p V p] (¬s V r) {Commutative law (P Q) = (Q P)}
[F] [T] (¬s V r) { we know that P ¬P = F & P V ¬P = T }
[F] ¬s (T V r) {Commutative law (P Q) = (Q P)}
[F ¬s] (T V r) {Associative law (P Q) R = P (Q R)}
[F] (T) { we know that F ¬P = F & A V T = T }
[F T ] {Associative law (P Q) R = P (Q R)}
[F] { we know that T F = F }
Contradiction
R.H.S
L.H.S R.H.S
So ¬(q p) (pqs r) p is a Contradiction