Question

In: Advanced Math

Please explain why and how the following are true. I. p ⇒(q∧r) is equivalent to (p...

Please explain why and how the following are true.

I. p ⇒(q∧r) is equivalent to (p ⇒q)∧(p ⇒r)

II. Let p(x) and p(x) be defined on an random/arbitrary universe of discourse. Why, in words, is (∀x)[p(x) ∧ q(x)] equivalent to[(∀x)p (x)] ∧ [(∀x)q(x)]

Solutions

Expert Solution

Here logical proposition are given ... we want to show they are equivalent....above images contains solution of that...


Related Solutions

Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Convert the logical statement ~(P || ~R) || (Q -> R) to conjunctive normal form. Please...
Convert the logical statement ~(P || ~R) || (Q -> R) to conjunctive normal form. Please explain the steps!!
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Type a proposition involving p, q, r and s that is true just when at least...
Type a proposition involving p, q, r and s that is true just when at least two of the propositional variables are true. For example, your proposition would be true in any case for which p and r are both true but false when, say, p is true while q, r and s are all false.
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.)...
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.) Why does this equivalency allow us to use the proof by contradiction technique?
Let q and p be natural numbers, and show that the metric on Rq+p is equivalent...
Let q and p be natural numbers, and show that the metric on Rq+p is equivalent to the metric it has if we identify Rq+p with Rq × Rp.
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT