Question

In: Computer Science

Q1) Determine whether each of the compound proposition is satisfiable. (p ∨ q ∨ r) ∧...

Q1) Determine whether each of the compound proposition is satisfiable.
(p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬s) ∧ (q ∨ ¬r ∨ s) ∧ (¬p ∨ r ∨ s) ∧ (¬p ∨ q ∨ ¬s) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ s) ∧ (¬p ∨ ¬r ∨ ¬s)

Q2) Negate the following statements, no negation symbol before quantifiers.

1) ∃x∃y(Q(x, y) ↔ Q(y, x))

2) ∀y∃x∃z(T (x, y, z) ∨ Q(x, y))

Solutions

Expert Solution

Here is Handwritten answers for both questions with explanation and Please do not forget to like my work by hitting that thumbs-up button it really motivates me>3

Thank you!!

Note : - You can view image in new window for better view. Just right click on image in choose "View image in new window".

And again Please hit that like button>3


Related Solutions

FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Write a truth table for the proposition: ¬(q ∧ r) → (¬p ∨ ¬r). Consider a “1” to be true and a “0” to be false.
Type a proposition involving p, q, r and s that is true just when at least...
Type a proposition involving p, q, r and s that is true just when at least two of the propositional variables are true. For example, your proposition would be true in any case for which p and r are both true but false when, say, p is true while q, r and s are all false.
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
A compound gear train with gears P, Q, R, S, T and U has number of...
A compound gear train with gears P, Q, R, S, T and U has number of teeth 10, 20, 02 40, 50, 80 and 100 respectively. Show the arrangement of gears for a speed reduction of 50% and determine the center distance between driving and driven shafts if the diametrical pitch of the gears is 0.5 I only have this question , cant give you more information
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
For each of the following determine whether ∗ is a binary operation on R. If so,...
For each of the following determine whether ∗ is a binary operation on R. If so, determine whether or not ∗ is associative, commutative, has an identity element, and has inverse elements. (a) a ∗ b = (ab) / (a+b+1) (b) a ∗ b = a + b + k where k ∈ Z (c) a ln(b) on {x ∈ R | x > 0}
1. Determine if the following deduction rule is valid: p∨q ¬p _______ ∴ q 2. Determine...
1. Determine if the following deduction rule is valid: p∨q ¬p _______ ∴ q 2. Determine if the following is a valid deduction rule: (p∧q)→r ¬ p ∨ ¬ q ________ ∴     ¬r 3. Suppose p and q are (possibly molecular) propositional statements. Prove that p and q are logically equivalent if any only if p↔q is a tautology.
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT