Question

In: Math

Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...

Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.

Solutions

Expert Solution

Solution:

Let   where is a vector space.

Call   the mutual kernel and   the mutual image .

Consider any and let

and .

Now,  

, since   for all   .

So,   .

where   and .

, since   and .

for every   ,  

Hence,


Related Solutions

Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Use rules of inference to show that the hypotheses p → q, r → s, and...
Use rules of inference to show that the hypotheses p → q, r → s, and ¬q ∨ ¬s implies ¬p ∨ ¬r
Let p and q be two linearly independent vectors in R^n such that ||p||_2=1, ||q||_2=1 ....
Let p and q be two linearly independent vectors in R^n such that ||p||_2=1, ||q||_2=1 . Let A=pq^T+qp^T. determine the kernel, nullspace,rank and eigenvalue decomposition of A in terms of p and q.
give a constructive proof of fn = Q^n + P^n/ Q - P , where Q...
give a constructive proof of fn = Q^n + P^n/ Q - P , where Q is the positive root and P is negative root of x^2 - x - 1= 0 fn is nth term of fibonacci sequence, f1 = 1 f2, f3 = f2 +f1, ... fn= fn_1 +fn_2 , n>2
Suppose P, Q and R are atomic propositions. (a) Show that the conjunction connective satisfies the...
Suppose P, Q and R are atomic propositions. (a) Show that the conjunction connective satisfies the commutative and associativity property. (b) Show that the disjunction connective satisfies the commutative and associativity property. (c) Construct a propositional form using all three atomic propositions above as well as the connectives conjunction, disjunction and conditional. (d) Construct an equivalent propositional form for (c).
1. Show that the argument (a) p → q       q → p       therefore p...
1. Show that the argument (a) p → q       q → p       therefore p V q       is invalid using the truth table. ( 6 marks ) (b) p → q       P       therefore p        is invalid using the truth table. ( 6 marks ) (c) p → q       q → r        therefore p → r         is invalid using the truth table. ( 8 marks )
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.)...
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.) Why does this equivalency allow us to use the proof by contradiction technique?
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT