In: Math
Dry Goods Sales The data is for weekly sales in the dry goods department at a Wal*Mart store in the Northeast. Peak values, I.e. spikes, usually occur at holiday periods. Week 1 is the first week of February 2002. To show continuity, week 1 of 2003 is represented as week 54 since week 53 represents the end of fiscal 2002 and start of the 2003 fiscal year. Dollar values are adjusted in order to disguise true sales figures, but trends in the data are retained for analysis puposes. |
Week | Sales in $ | ||||||||
26 | 15200 | ||||||||
27 | 15600 | ||||||||
28 | 16400 | ||||||||
29 | 15600 | ||||||||
30 | 14200 | ||||||||
31 | 14400 | ||||||||
32 | 16400 | ||||||||
33 | 15200 | ||||||||
34 | 14400 | ||||||||
35 | 13800 | ||||||||
36 | 15000 | ||||||||
37 | 14100 | ||||||||
38 | 14400 | ||||||||
39 | 14000 | ||||||||
40 | 15600 | ||||||||
41 | 15000 | ||||||||
42 | 14400 | ||||||||
43 | 17800 | ||||||||
44 | 15000 | ||||||||
45 | 15200 | ||||||||
46 | 15800 | ||||||||
47 | 18600 | ||||||||
48 | 15400 | ||||||||
49 | 15500 | ||||||||
50 | 16800 | ||||||||
51 | 18700 | ||||||||
52 | 21400 | ||||||||
53 | 20900 | ||||||||
54 | 18800 | ||||||||
55 | 22400 | ||||||||
56 | 19400 | ||||||||
57 | 20000 | ||||||||
58 | 18100 | ||||||||
59 | 18000 | ||||||||
60 | 19600 | ||||||||
61 | 19000 | ||||||||
62 | 19200 | ||||||||
63 | 18000 | ||||||||
64 | 17600 | ||||||||
65 | 17200 | ||||||||
66 | 19800 | ||||||||
67 | 19600 | ||||||||
68 | 19600 | ||||||||
69 | 20000 | ||||||||
70 | 20800 | ||||||||
71 | 22800 | ||||||||
72 | 23000 | ||||||||
73 | 20800 | ||||||||
74 | 25000 | ||||||||
75 | 30600 | ||||||||
76 | 24000 | ||||||||
77 |
21200 |
1.) Can you identify at least 6 holiday periods or special events that cause the spikes in the data?
a.) In each case give the week number, date, and what holiday or special event it represents
b.) Which holiday results in the maximum sales for this department and how much are the sales?
2.) Generate three linear models for this data. Each linear model should be generated from a pair of data points.
a.) For each linear model, find the equation of the line. Show your work. Write the equation in slope intercept form.
b.) For each linear model discuss the meaning of the slope and y-intercept. Also provide an analysis as to why you like or dislike that particular model
c.) Discuss the rationale behind the model that you believe best predicts future results.
3.) Predict and analyze sales for the next four weeks
a.) Using your most preferred linear model, predict sales for the next four weeks and show calculations
b.) Based on your preferred linear model, compute the percent rate of increase (y2-y1)/y1 for the next four weeks
4.) If you were a manager of this department store, what recommendation would you make to the person in charge of inventory?
Linear Model,
The regression equation is defined as,
Now, the regression analysis is done in excel by following steps
Step 1: Write the data values in excel. The screenshot is shown below,
Step 2: DATA > Data Analysis > Regression > OK. The screenshot is shown below,
Step 3: Select Input Y Range: 'y' column, Input X Range: 'x' column then OK. The screenshot is shown below,
The result is obtained. The screenshot is shown below,
The regression equation is,
Quadratic model,
The regression equation is defined as,
Step 1: Write the data values in excel. The screenshot is shown below,
Step 2: DATA > Data Analysis > Regression > OK.
Step 3: Select Input Y Range: 'y' column, Input X Range: 'X' column and X2 column then OK. The screenshot is shown below,
The result is obtained. The screenshot is shown below,
The regression equation is,
b)
the marginal sales using the regression models are obtained by puuting the value of 'X' in the regreesion equation,
Linear model | Quadratic model | |||
Sales, y | Week, x | X^2 | Y=8741.975+180.9997X | Y=16889.19-164.762X+3.3569X^2 |
15200 | 26 | 676 | 13447.97 | 14874.65 |
15600 | 27 | 729 | 13628.97 | 14887.81 |
16400 | 28 | 784 | 13809.97 | 14907.68 |
15600 | 29 | 841 | 13990.97 | 14934.26 |
14200 | 30 | 900 | 14171.97 | 14967.55 |
14400 | 31 | 961 | 14352.97 | 15007.56 |
16400 | 32 | 1024 | 14533.97 | 15054.29 |
15200 | 33 | 1089 | 14714.97 | 15107.72 |
14400 | 34 | 1156 | 14895.97 | 15167.88 |
13800 | 35 | 1225 | 15076.97 | 15234.74 |
15000 | 36 | 1296 | 15257.97 | 15308.32 |
14100 | 37 | 1369 | 15438.97 | 15388.61 |
14400 | 38 | 1444 | 15619.96 | 15475.62 |
14000 | 39 | 1521 | 15800.96 | 15569.34 |
15600 | 40 | 1600 | 15981.96 | 15669.77 |
15000 | 41 | 1681 | 16162.96 | 15776.92 |
14400 | 42 | 1764 | 16343.96 | 15890.78 |
17800 | 43 | 1849 | 16524.96 | 16011.36 |
15000 | 44 | 1936 | 16705.96 | 16138.65 |
15200 | 45 | 2025 | 16886.96 | 16272.65 |
15800 | 46 | 2116 | 17067.96 | 16413.37 |
18600 | 47 | 2209 | 17248.96 | 16560.80 |
15400 | 48 | 2304 | 17429.96 | 16714.94 |
15500 | 49 | 2401 | 17610.96 | 16875.80 |
16800 | 50 | 2500 | 17791.96 | 17043.37 |
18700 | 51 | 2601 | 17972.96 | 17217.66 |
21400 | 52 | 2704 | 18153.96 | 17398.66 |
20900 | 53 | 2809 | 18334.96 | 17586.37 |
18800 | 54 | 2916 | 18515.96 | 17780.80 |
22400 | 55 | 3025 | 18696.96 | 17981.94 |
19400 | 56 | 3136 | 18877.96 | 18189.79 |
20000 | 57 | 3249 | 19058.96 | 18404.36 |
18100 | 58 | 3364 | 19239.96 | 18625.65 |
18000 | 59 | 3481 | 19420.96 | 18853.64 |
19600 | 60 | 3600 | 19601.96 | 19088.35 |
19000 | 61 | 3721 | 19782.96 | 19329.78 |
19200 | 62 | 3844 | 19963.96 | 19577.91 |
18000 | 63 | 3969 | 20144.96 | 19832.77 |
17600 | 64 | 4096 | 20325.96 | 20094.33 |
17200 | 65 | 4225 | 20506.96 | 20362.61 |
19800 | 66 | 4356 | 20687.96 | 20637.60 |
19600 | 67 | 4489 | 20868.96 | 20919.31 |
19600 | 68 | 4624 | 21049.96 | 21207.73 |
20000 | 69 | 4761 | 21230.96 | 21502.87 |
20800 | 70 | 4900 | 21411.96 | 21804.71 |
22800 | 71 | 5041 | 21592.96 | 22113.28 |
23000 | 72 | 5184 | 21773.96 | 22428.55 |
20800 | 73 | 5329 | 21954.96 | 22750.54 |
25000 | 74 | 5476 | 22135.96 | 23079.25 |
30600 | 75 | 5625 | 22316.96 | 23414.66 |
24000 | 76 | 5776 | 22497.96 | 23756.80 |
21200 | 77 | 5929 | 22678.96 | 24105.64 |
c)
R square for linear model = 0.670943
R square for quadratic model = 0.650563
The R square value for linear model is greater than linear model hence linear model is better fit compare to quadratic model.
The scatter plot between sales and week doesnot shows any seasonality (repeated pattern)