In: Computer Science
Many people try to describe certain changes Western civilization is currently experiencing as a "revolution," while others disagree with these claims. Given what you've learned about the characteristics of previous revolutions, do you agree that we are currently experiencing a revolution? In order to answer this question, you must demonstrate an understanding of the Scientific and Industrial Revolutions, as well as what constitutes a revolution.
Are we currently experiencing a revolution?
Charactwrstics of previous revolution
(1) Starts with tax increase
(2) Ruler refuses to compromise
(3) Rebellion of an army
(4) Division of revolutionary movement
(5) Starts with economic hardship
(6) Threat of outside forces(often happens in the latter phases of a revolution)
Do green with current facing revolution:--
No,
The protests that have erupted across the United States following the brutal deaths of George Floyd, Breonna Taylor and others at the hands of the police fit a pattern of long-term structural problems meeting sudden crises that historically have shaped revolutions in the past.
As we grapple with what might change in the wake of covid-19 and unrest across the country, the case of the French Revolution of 1789 reminds us of the contested nature of social change. Revolutions do not necessarily erupt at the moment when people are most oppressed. Rather, revolutions have more often been the result of “rising expectations.” Periods of progress followed by crushed hopes can be especially dangerous, leading to rage and violence.
Science and the Industrial Revolution
What science offered in the 18th century was the hope that careful observation and experimentation might improve industrial production significantly. In some areas, it did. The potter Josiah Wedgwood built his successful business on the basis of careful study of clays and glazes and by the invention of instruments like the pyrometer with which to gauge and control the processes he employed. It was not, however, until the second half of the 19th century that science was able to provide truly significant help to industry. It was then that the science of metallurgy permitted the tailoring of alloy steels to industrial specifications, that the science of chemistry permitted the creation of new substances, like the aniline dyes, of fundamental industrial importance, and that electricity and magnetism were harnessed in the electric dynamo and motor. Until that period science probably profited more from industry than the other way around. It was the steam engine that posed the problems that led, by way of a search for a theory of steam power, to the creation of thermodynamics. Most importantly, as industry required ever more complicated and intricate machinery, the machine tool industry developed to provide it and, in the process, made possible the construction of ever more delicate and refined instruments for science. As science turned from the everyday world to the worlds of atoms and molecules, electric currents and magnetic fields, microbes and viruses, and nebulae and galaxies, instruments increasingly provided the sole contact with phenomena.
Login
ArticleMediaAdditional Info
LOAD PREVIOUS PAGE
Science and the Industrial Revolution
It has long been a commonsensical notion that the rise of modern science and the Industrial Revolution were closely connected. It is difficult to show any direct effect of scientific discoveries upon the rise of the textile or even the metallurgical industry in Great Britain, the home of the Industrial Revolution, but there certainly was a similarity in attitude to be found in science and nascent industry. Close observation and careful generalization leading to practical utilization were characteristic of both industrialists and experimentalists alike in the 18th century. One point of direct contact is known: namely, James Watt’s interest in the efficiency of the Newcomen steam engine, an interest that grew from his work as a scientific-instrument maker and that led to his development of the separate condenser that made the steam engine an effective industrial power source. But, in general, the Industrial Revolution proceeded without much direct scientific help. Yet the potential influence of science was to prove of fundamental importance.
What science offered in the 18th century was the hope that careful observation and experimentation might improve industrial production significantly. In some areas, it did. The potter Josiah Wedgwood built his successful business on the basis of careful study of clays and glazes and by the invention of instruments like the pyrometer with which to gauge and control the processes he employed. It was not, however, until the second half of the 19th century that science was able to provide truly significant help to industry. It was then that the science of metallurgy permitted the tailoring of alloy steels to industrial specifications, that the science of chemistry permitted the creation of new substances, like the aniline dyes, of fundamental industrial importance, and that electricity and magnetism were harnessed in the electric dynamo and motor. Until that period science probably profited more from industry than the other way around. It was the steam engine that posed the problems that led, by way of a search for a theory of steam power, to the creation of thermodynamics. Most importantly, as industry required ever more complicated and intricate machinery, the machine tool industry developed to provide it and, in the process, made possible the construction of ever more delicate and refined instruments for science. As science turned from the everyday world to the worlds of atoms and molecules, electric currents and magnetic fields, microbes and viruses, and nebulae and galaxies, instruments increasingly provided the sole contact with phenomena. A large refracting telescope driven by intricate clockwork to observe nebulae was as much a product of 19th-century heavy industry as were the steam locomotive and the steamship.
The Industrial Revolution had one further important effect on the development of modern science. The prospect of applying science to the problems of industry served to stimulate public support for science. The first great scientific school of the modern world, the École Polytechnique in Paris, was founded in 1794 to put the results of science in the service of France. The founding of scores more technical schools in the 19th and 20th centuries encouraged the widespread diffusion of scientific knowledge and provided further opportunity for scientific advance. Governments, in varying degrees and at different rates, began supporting science even more directly, by making financial grants to scientists, by founding research institutes, and by bestowing honours and official posts on great scientists. By the end of the 19th century the natural philosopher following his private interests had given way to the professional scientist with a public role.
What constitute the revolution :--
In political science, a revolution (Latin: revolutio, "a turn around") is a fundamental and relatively sudden change in political power and political organization which occurs when the population revolts against the government, typically due to perceived oppression (political, social, economic) or political
Yes, we facing a revolution.