Question

In: Chemistry

An ideal gas is expanded from 10 bar to 1.0 bar at constant temperature. Calculate deltaU,...

An ideal gas is expanded from 10 bar to 1.0 bar at constant temperature. Calculate deltaU, deltaH, and deltaS. CP = 5/2 R.

Solutions

Expert Solution

In an isothermal expansion, heat is allowed to flow into or out of the system so that temperature remains constant throughout the process of expansion. Since, for an ideal gas, the internal energy, ΔU, depends only on temperature, if follows that at constant temperature, the internal energy of the gas remains constant, that is ΔU = 0.

Calculation of ΔH can be done according to the following equation:

ΔH = ΔU + Δ(PV)

ΔH = ΔU + Δ(nRT)

Since for isothermal process, ΔU and ΔT are zero respectively, hence, ΔH = 0

ΔS = 2.303nRlog [P1/P2]                                     ( n=1, for an ideal gas and CP =5/2 R indicates monoatomic gas)

ΔS = 2.303x 1 x(8.314 J/K mol )x log [10 bar/1.0 bar]

ΔS = 2.303 x 1 mol x (8.314 J/K mol ) x 1 = 19.14 J/K


Related Solutions

A sample of a gas at an initial pressure of 1.0 ATM is expanded at constant...
A sample of a gas at an initial pressure of 1.0 ATM is expanded at constant temp from 10.L to 15L. Calculate the final pressure of the gas
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm...
An ideal monatomic gas at an initial temperature of 500 K is expanded from 5.0 atm to a final pressure of 1.0 atm. Calculate w, q, DU, and (where applicable) DH and DT when the expansion is performed (a) reversibly and isothermally, and (b) reversibly and adiabatically. Help Please!!!
10.0 L of an ideal gas at 0°C and 10.0 bar are expanded to a final...
10.0 L of an ideal gas at 0°C and 10.0 bar are expanded to a final pressure of 1.00 bar CV = 3/2 R. Calculate deltaU, deltaH, q, w, and deltaS if the process is: a) reversible and isothermal b) irreversible and adiabatic
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
An ideal gas is expanded from 5 bars to 1 bar through isentropic(reversible and adiabatic) operation...
An ideal gas is expanded from 5 bars to 1 bar through isentropic(reversible and adiabatic) operation of a turbine. For ambient conditions at 25°C and 1 bar, calculate the exergy of the turbine when the gas inlet temperature to the turbine is: I) above ambient conditions at 250°C (8marks) ii) below ambient condition at -50°C (8marks) iii) comment on your answer to I and ii above (4marks) (Cp=1.0KJ/Kg.K , n=1.4)
The pressure on a sample of an ideal gas is increased from 715 mmHg to 3.55 atm at constant temperature.
  The pressure on a sample of an ideal gas is increased from 715 mmHg to 3.55 atm at constant temperature. If the initial volume of the as is 472 mL. what is the final volume of the gas?   A 4.00 L sample of gas is cooled from 71 CC to a temperature at which its volume is 2.60 L. What is this new temperature? Assume no change in pressure of the gas.   A scuba diver releases a...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
If the steam is now expanded from 10 bar and 500 degree Celsius to 0.04 bar...
If the steam is now expanded from 10 bar and 500 degree Celsius to 0.04 bar with isentropic efficiency of 90%, in what respects does the ideal gas assumption become invalid. Compare the ideal gas and steam table results for the exit temperature and the work output
An ideal gas has a constant volume specific heat cv as a function of temperature. Find...
An ideal gas has a constant volume specific heat cv as a function of temperature. Find the change in internal energy and enthalpy if the gas is heated from a temperature of 300K to 600K. cv(T) = 716.66 + 0.4T + 0.000667T2 J/kg.K Also, sketch the constant pressure specific heat as a function of temperature and mention the point T = 400K on the cp – T diagram. Assume that the gas constant of the given ideal gas is 286.9...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT