Question

In: Physics

Four moles of a monoatomic ideal gas in a cylinder at 27 degrees Celsius is expanded...

Four moles of a monoatomic ideal gas in a cylinder at 27 degrees Celsius is expanded at constant pressure equal to 1 atm until its volume is doubled.

a) What is the change in internal energy?

b) How much work was done by the gas in the process?

c) How much heat was transferred to the gas?

Solutions

Expert Solution


Related Solutions

Consider a monoatomic ideal gas of N moles in a gas cylinder eqilibrated at temperature T1...
Consider a monoatomic ideal gas of N moles in a gas cylinder eqilibrated at temperature T1 and pressure P1 by a mass placed on the piston. Upon removal of the mass , the gas reaches a new eqilibrium pressure P2 (<P1). Calculate the amount of work done by the gas on the surroundings for the following processes. ( You must express your answer in terms of the given variables.) 1. a nonquasistatic isothermal process (sudden removal of the mass) 2....
5 moles of a monoatomic ideal gas are contained adiabatically at 50 atm pressure and 300...
5 moles of a monoatomic ideal gas are contained adiabatically at 50 atm pressure and 300 K. The pressure is suddenly released to 10 atm, and the undergoes an irreversible expansion during which it performs 4000 joules of work. Show to the final temperature of the gas after the irreversible expansion is greater than that which the would attain if the expansion from 50 to 10 atm had been conducted reversibly. Calculate the entropy product as a result of the...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till...
Ten moles of an ideal gas at 5 bar and 600 K is expanded adiabatically till its pressure becomes 1/5th the initial pressure. Then its compressed at constant pressure and finally heated at constant volume to return to its initial state, calculate: (a) heat transfer (b) work transfer (c) internal energy and enthalpy change for each process, and for the entire cycle.Based on the results of internal energy change and enthalpy change, is the entire process follows the condition of...
Four moles of a monatomic ideal gas are taken through a three-process thermodynamic cycle. The gas...
Four moles of a monatomic ideal gas are taken through a three-process thermodynamic cycle. The gas initially has a pressure of 8.00 atm with a temperature of 600 K (point A). The gas it then expanded isothermally to point B where the volume is 48.0 L. The gas is compressed via an isobarically process (point C). The gas is then expanded adiabatically back to its initial state. For all calculations using the ideal gas law assume that R = 0.08...
An ideal monoatomic gas is separated into two volumes V1 and V2 by means of of...
An ideal monoatomic gas is separated into two volumes V1 and V2 by means of of a diathermic piston, such that each volume contains N atoms and both parts are they find at the same temperature T0. The complete system is isolated from the exterior by means of insulating walls. The piston is externally manipulated reversibly until the two gases are they find in thermodynamic equilibrium one with the other. The purpose is to find the final temperature and the...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 36.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 7.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when...
(A) Derive the canonical partition function for a monoatomic ideal gas. (B) Using the partition function,...
(A) Derive the canonical partition function for a monoatomic ideal gas. (B) Using the partition function, derive the entropy for a monoatomic gas. can you help me with detailed explanations
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to...
One mole of a monoatomic, ideal gas at initial pressure P0 and volume V0 goes to 2P0 a) along the path PV = constant, and b) at constant volume. Find the heat added to the gas in each case.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT