Question

In: Computer Science

Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...

Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form.

0100_0001_1110_0010_1000_0000_0000_0000

Solutions

Expert Solution

0 10000011 11000101000000000000000
sign bit is 0(+ve)
exp bits are 10000011
Converting 10000011 to decimal
   10000011
   => 1x2^7+0x2^6+0x2^5+0x2^4+0x2^3+0x2^2+1x2^1+1x2^0
   => 1x128+0x64+0x32+0x16+0x8+0x4+1x2+1x1
   => 128+0+0+0+0+0+2+1
   => 131
in decimal it is 131
so, exponent/bias is 131-127 = 4
frac bits are 11000101

IEEE-754 binary value is 1.frac * 2^exponent
IEEE-754 binary value is 1.11000101 * 2^4 = 11100.0101
Answer: 11100.0101

1.11000101 in decimal is 1.76953125
   => 1.11000101
   => 1x2^0+1x2^-1+1x2^-2+0x2^-3+0x2^-4+0x2^-5+1x2^-6+0x2^-7+1x2^-8
   => 1x1+1x0.5+1x0.25+0x0.125+0x0.0625+0x0.03125+1x0.015625+0x0.0078125+1x0.00390625
   => 1+0.5+0.25+0.0+0.0+0.0+0.015625+0.0+0.00390625
   => 1.76953125
so, 1.76953125 * 2^4 in decimal is 28.3125
so, 01000001111000101000000000000000 in IEEE-754 single precision format is 28.3125

Answer in binary:   11100.0101
Answer in decimal:  28.3125

Related Solutions

Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B)...
A) Convert 1101.11011101 x 223 to IEEE Standard 754 for single precision floating-point binary format. B) Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.  
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000...
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000 0000 0000 0000 0000
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit...
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit is sign bit, next 8 bits is exponent field, and remaining 23 bits is mantissa field; result is to be in hexadecimal and not to be rounded up. answer choices 5717E27B 57172EB7 5717E2B7 C717E2B7 5771E2B7
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754...
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754 standard is
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point...
Express the following two base 10 numbers in binary using the IEEE 754 single-precision floating point format (i.e., 32 bits). Express your final answer in hexadecimal (e.g., 32’h????????). a) 68.3125 b) -19.675
Describe how zero, infinity, and NaN are stored in IEEE 754 floating point formats
Describe how zero, infinity, and NaN are stored in IEEE 754 floating point formats
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
With a detailed step-by-step process, convert the following decimal number into binary, Hexadecimal and IEEE 754...
With a detailed step-by-step process, convert the following decimal number into binary, Hexadecimal and IEEE 754 formats : 72.nn ( where nn is 80)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT