Question

In: Computer Science

The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754...

The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754 standard is

Solutions

Expert Solution

1 10000010 01101100000000000000000

Explanation:
-------------
-11.375
Converting 11.375 to binary
   Convert decimal part first, then the fractional part
   > First convert 11 to binary
   Divide 11 successively by 2 until the quotient is 0
      > 11/2 = 5, remainder is 1
      > 5/2 = 2, remainder is 1
      > 2/2 = 1, remainder is 0
      > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 1011
   So, 11 of decimal is 1011 in binary
   > Now, Convert 0.37500000 to binary
      > Multiply 0.37500000 with 2.  Since 0.75000000 is < 1. then add 0 to result
      > Multiply 0.75000000 with 2.  Since 1.50000000 is >= 1. then add 1 to result
      > Multiply 0.50000000 with 2.  Since 1.00000000 is >= 1. then add 1 to result
      > This is equal to 1, so, stop calculating
   0.375 of decimal is .011 in binary
   so, 11.375 in binary is 00001011.011
-11.375 in simple binary => 1011.011
so, -11.375 in normal binary is 1011.011 => 1.011011 * 2^3

single precision:
--------------------
sign bit is 1(-ve)
exponent bits are (127+3=130) => 10000010
   Divide 130 successively by 2 until the quotient is 0
      > 130/2 = 65, remainder is 0
      > 65/2 = 32, remainder is 1
      > 32/2 = 16, remainder is 0
      > 16/2 = 8, remainder is 0
      > 8/2 = 4, remainder is 0
      > 4/2 = 2, remainder is 0
      > 2/2 = 1, remainder is 0
      > 1/2 = 0, remainder is 1
   Read remainders from the bottom to top as 10000010
   So, 130 of decimal is 10000010 in binary
frac/significant bits are 01101100000000000000000

so, -11.375 in single-precision format is 1 10000010 01101100000000000000000



Related Solutions

Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000...
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000 0000 0000 0000 0000
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a =...
Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers: a = 0100 0000 1101 1000 0000 0000 0000 0000 b = 1011 1110 1110 0000 0000 0000 0000 0000 Perform the following arithmetic and show the results in both normalized binary format and IEEE 754 single-precision format. Show your steps. a)     a + b b)     a × b
verilog code to implement 32 bit Floating Point Adder in Verilog using IEEE 754 floating point...
verilog code to implement 32 bit Floating Point Adder in Verilog using IEEE 754 floating point representation.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Q1.Convert C46C000016 into a 32-bit single-precision IEEE floating-point binary number.
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit...
Convert 1.67e14 to the 32-bit IEEE 754 Floating Point Standard, with the following layout: first bit is sign bit, next 8 bits is exponent field, and remaining 23 bits is mantissa field; result is to be in hexadecimal and not to be rounded up. answer choices 5717E27B 57172EB7 5717E2B7 C717E2B7 5771E2B7
6a) (6 pts. each) Find the decimal represented by the 32-bit single precision floating point number...
6a) (6 pts. each) Find the decimal represented by the 32-bit single precision floating point number for the hexadecimal value C47CD000.
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and...
Convert 0.875 to an IEEE 754 single-precision floating-point number. Show the sign bit, the exponent, and the fraction. Convert -3.875 to an IEEE 754 double-precision floating-point number. Show the sign bit, the exponent, and the fraction Convert the IEEE 754 single-precision floating-point numbers 42E4800016 and 0080000016 to their corresponding decimal numbers.
IEEE 754 format of 32-bit floating-point is as follows. 1 8 (bits) 23 (bits) What’s stored...
IEEE 754 format of 32-bit floating-point is as follows. 1 8 (bits) 23 (bits) What’s stored in each region? What’s the bias value and how to get it? For decimal fraction: – 0.625, please represent it as given format (Note: you must show the specific procedure/stepsin order to get full credits. If you only present final result directly, you will only get half of the credits even if it is correct.).  
Consider the following 32-bit floating point representation based on the IEEE floating point standard: There is...
Consider the following 32-bit floating point representation based on the IEEE floating point standard: There is a sign bit in the most significant bit. The next eight bits are the exponent, and the exponent bias is 28-1-1 = 127. The last 23 bits are the fraction bits. The representation encodes number of the form V = (-1)S x M x 2E, where S is the sign, M is the significand, and E is the biased exponent. The rules for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT