Question

In: Other

The cycle involved in the operation of an internal combustion engine is called the Otto cycle....

  1. The cycle involved in the operation of an internal combustion engine is called the Otto cycle. Air can be considered to be the working gas and assumed perfect. The cycle consists of the following steps.
  1. reversible adiabatic compression from A to B
  2. reversible constant volume pressure increase from B to C (from the fuel combustion)
  3. reversible adiabatic expansion from C to D
  4. reversible constant volume pressure decrease from D to A

Determine an expression for the efficiency of this engine assuming that heat is supplied in step ii). Then evaluate the efficiency for a compression ratio of 10:1. Assume that the ratio of the volumes defines the compression ratio and that state A is defined by V = 4.00 L, P = 1.00 atm, and T = 300 K. Further, let VA = 10·VB, PC/PB = 5, and Cp,m = (7/2)R. Finally, calculate the entropy change for system and surroundings for each step in the cycle.

Solutions

Expert Solution


Related Solutions

combustion engine. Discuss the thermodynamics of the Otto cycle for a combustion engine. Why does the...
combustion engine. Discuss the thermodynamics of the Otto cycle for a combustion engine. Why does the efficiency depend on the compression ratio? What is the problem with that? Why is the Otto cycle better than a steam engine? Or, what is the main innovation
An Otto Cycle engine operation at cold-air standard has a volume of 0.1908 at the beginning...
An Otto Cycle engine operation at cold-air standard has a volume of 0.1908 at the beginning of isentropic compression. If the compression ratio is 12.5, how much heat is released from the fuel per kg of fuel burned if the fuel consumption is 0.02 kg/min? The mean effective pressure is 350kPa.
Research how an internal combustion engine operates. Describe four steps of a combustion cycle. What materials...
Research how an internal combustion engine operates. Describe four steps of a combustion cycle. What materials go in and out of the engine during each step? How many cylinders are involved in one cycle? What energy processes take place during each stroke? In which steps is work done?
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is...
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is compressed with a compression ratio of 10. At the beginning of the compression process, air is at 105 kPa and 17oC, and in the combustion process 640 kJ/kg of heat is added to air. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition (combustion) process, (b) the net work output, (c)...
1- You need to analyze the operation and performance of a four-stroke, spark-ignition internal combustion engine...
1- You need to analyze the operation and performance of a four-stroke, spark-ignition internal combustion engine (automobile engine). a- Would you analyze the engine as an Open System or a Closed System? b- How many properties of the engine exhaust would you need to measure in order to determine the Thermodynamic State of the exhaust gas? c- Identify a set of properties of the exhaust gas that you might measure to establish its state. d- Are these properties Intensive or...
A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is...
A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is shown as below:- Displacement volume of the cylinder = 540 cm3 Clearance volume of the cylinder = 60 cm3 Minimum temperature = 200°C Minimum pressure = 200 kPa Net work output = 1000 kJ/kg Sketch the process on a P-V diagram and by using constant specific heat at room temperature, determine: i) the temperature and pressure at each process, ii) the thermal efficiency of...
A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is...
A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is shown as below:- Displacement volume of the cylinder = 560 cm3 Clearance volume of cylinder = 70 cm3 Minimum temperature = 200°C Minimum pressure = 200 kPa Net work output = 1000 kJ/kg Sketch the process on a P-V diagram and by using constant specific heat at room temperature, determine: 1) the temperature and pressure at each process, 2) the thermal efficiency of the...
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat...
The compression ratio is 8 in an engine working with the ideal Otto cycle. The heat transfer to the engine takes place from a heat source at a temperature of 1000 ° C and the heat transfer from the engine to the outside takes place in the environment of 20 ° C and 100 kPa. At the start of the isentropic compression process, the temperature is 50 ⁰C and the pressure is 110 kPa. The temperature at the end of...
Working from first principles, derive an expression for the efficiency of an Otto Cycle engine in...
Working from first principles, derive an expression for the efficiency of an Otto Cycle engine in terms of compression ratio. Sketch the P-V diagram for this cycle and annotate it using the same station numbers used in your derivation. State why the efficiency must be less than that of the Carnot Cycle.
Thermodynamics problem: An engine operates on an air-standard Otto cycle. The pressure and temperature of the...
Thermodynamics problem: An engine operates on an air-standard Otto cycle. The pressure and temperature of the isentropic compression 100 kPa and 40 °C, respectively. The pressure at the end of compression is 2.0 MPa and the net work is 87,000 J/mol. Assume ideal air-standard cycle. Determine the following: pressure, volume, and temperature at end of each step. compression ratio. heat input and heat rejected per mol of working fluid. thermal efficiency of the cycle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT