Question

In: Physics

Research how an internal combustion engine operates. Describe four steps of a combustion cycle. What materials...

Research how an internal combustion engine operates. Describe four steps of a combustion cycle. What materials go in and out of the engine during each step? How many cylinders are involved in one cycle? What energy processes take place during each stroke? In which steps is work done?

Solutions

Expert Solution

Internal combustion engine operation

Combustion, also known as burning, is the basic chemical process of releasing energy from a fuel and air mixture. In an internal combustion engine (ICE), the ignition and combustion of the fuel occurs within the engine itself. The engine then partially converts the energy from the combustion to work. The engine consists of a fixed cylinder and a moving piston. The expanding combustion gases push the piston, which in turn rotates the crankshaft. Ultimately, through a system of gears in the powertrain, this motion drives the vehicle’s wheels.

There are two kinds of internal combustion engines currently in production: the spark ignition gasoline engine and the compression ignition diesel engine. Most of these are four-stroke cycle engines, meaning four piston strokes are needed to complete a cycle. The cycle includes four distinct processes: intake, compression, combustion and power stroke, and exhaust.

Spark ignition gasoline and compression ignition diesel engines differ in how they supply and ignite the fuel. In a spark ignition engine, the fuel is mixed with air and then inducted into the cylinder during the intake process. After the piston compresses the fuel-air mixture, the spark ignites it, causing combustion. The expansion of the combustion gases pushes the piston during the power stroke. In a diesel engine, only air is inducted into the engine and then compressed. Diesel engines then spray the fuel into the hot compressed air at a suitable, measured rate, causing it to ignite.

Four steps of a combustion cycle

A four-cycle engine works with 4 basic steps to a successful rotation of the crankshaft: the intake, compression, power and exhaust stroke. Each engine cylinder has four openings for the intake, exhaust, spark plug and fuel injection. The piston is driven by the engine's crankshaft whereas the intake and exhaust valves are driven by the camshaft. The crankshaft and camshaft are connected by a timing belt/chain to maintain synchronization between them. The various processes comprising the cycles of a four-stroke engine are explained below:

Intake Stroke: The intake stroke is where the intake valves are open and the air is drawn into the cylinder. The fuel injector sprays the fuel into the cylinder to achieve the perfect air-fuel ratio. The downward movement of the piston causes the air and fuel to be sucked into the cylinder.

Compression Stroke: The next is the compression cycle where both the intake and exhaust valves are closed. The upward movement of the piston causes the air-fuel mixture to be compressed upwards towards the spark plug. The compression makes the air-fuel combination volatile for easier ignition.

Combustion/Power Stroke: During the power/combustion stroke, both the intake and exhaust valves are still closed. The spark plug produces a spark to ignite the compressed air-fuel mixture. The resulting energy of the combustion forcefully pushes the piston downward.

Exhaust Stroke: The last cycle is the exhaust stroke, when the exhaust valves open and the exhaust gases are forced up by the returning piston.

Most cars have four, six, or eight cylinders. If the car has four cylinders, called the straight-four engine, all of its cylinders are designed to be in a straight line. This configuration is common to cars that have a 2.4-liter engine displacement. An engine of a car with six cylinders is called a V6 engine.


Related Solutions

A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is...
A single-cylinder, four stroke research engine operates on Otto cycle. The specification of the engine is shown as below:- Displacement volume of the cylinder = 540 cm3 Clearance volume of the cylinder = 60 cm3 Minimum temperature = 200°C Minimum pressure = 200 kPa Net work output = 1000 kJ/kg Sketch the process on a P-V diagram and by using constant specific heat at room temperature, determine: i) the temperature and pressure at each process, ii) the thermal efficiency of...
The cycle involved in the operation of an internal combustion engine is called the Otto cycle....
The cycle involved in the operation of an internal combustion engine is called the Otto cycle. Air can be considered to be the working gas and assumed perfect. The cycle consists of the following steps. reversible adiabatic compression from A to B reversible constant volume pressure increase from B to C (from the fuel combustion) reversible adiabatic expansion from C to D reversible constant volume pressure decrease from D to A Determine an expression for the efficiency of this engine...
combustion engine. Discuss the thermodynamics of the Otto cycle for a combustion engine. Why does the...
combustion engine. Discuss the thermodynamics of the Otto cycle for a combustion engine. Why does the efficiency depend on the compression ratio? What is the problem with that? Why is the Otto cycle better than a steam engine? Or, what is the main innovation
1- You need to analyze the operation and performance of a four-stroke, spark-ignition internal combustion engine...
1- You need to analyze the operation and performance of a four-stroke, spark-ignition internal combustion engine (automobile engine). a- Would you analyze the engine as an Open System or a Closed System? b- How many properties of the engine exhaust would you need to measure in order to determine the Thermodynamic State of the exhaust gas? c- Identify a set of properties of the exhaust gas that you might measure to establish its state. d- Are these properties Intensive or...
An engine operates in a Carnot cycle. At point A in the cycle, 2.34 mol of...
An engine operates in a Carnot cycle. At point A in the cycle, 2.34 mol of a monatomic ideal gas has a pressure of 1,400 kPa, a volume of 10.0 L, and a temperature of 720 K. The gas expands isothermally to point B and then expands adiabatically to point C, where its volume is 24.0 L. An isothermal compression brings it to point D, where its volume is 15.0 L. An adiabatic process returns the gas to point A....
Another type of external combustion steam engine in the Rankine cycle engine. You are told a...
Another type of external combustion steam engine in the Rankine cycle engine. You are told a Rankine engine will be operated in the following manner. The engine will use 0.46 kilomoles of water vapor. The water vapor is initially at 1.5 atm in a 10 m3 vessel. The water vapor is compressed isobarically to 1/10th of its original volume. The water vapor is then isochorically pressurized to 5 atm. The water is then isobarically expanded to a volume of 4.23...
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is...
Consider an automobile engine which operates on the ideal Otto cycle. In this engine, air is compressed with a compression ratio of 10. At the beginning of the compression process, air is at 105 kPa and 17oC, and in the combustion process 640 kJ/kg of heat is added to air. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition (combustion) process, (b) the net work output, (c)...
a) An open cycle gas turbine engine consists of a compressor, a combustion chamber and a...
a) An open cycle gas turbine engine consists of a compressor, a combustion chamber and a two-stage turbine with a re-heater. The gas enters the compressor at a temperature of 15 C. The pressure ratio of the compressor, which is 90% efficient, is 12. The combustion gas enters the first stage turbine at 1100 C. Both stages of the turbine are 95% efficient. The first stage has a pressure ratio of 4, whereas that of the second stage is 3....
THERMODYNAMIC The specifications of a typical reciprocating internal combustion engine coupled with a generator are given...
THERMODYNAMIC The specifications of a typical reciprocating internal combustion engine coupled with a generator are given in Table Q2. With the aid of a P-v diagram, determine the following engine performance characteristics by using constant specific heat at room temperature: i) the total mass contained in the cylinder per cycle, ii) the mass of fuel burned per cycle, iii) the mean effective pressure, iv) the engine power in kW, and v) the specific fuel consumption in g/kWh . Table Q2...
During the power stroke of an internal combustion engine, the air-fuel mixture is ignited and the...
During the power stroke of an internal combustion engine, the air-fuel mixture is ignited and the expanding hot gases push on the piston. Fuel efficiency is maximized in this process when the ignited gas is as hot as possible, the gas expands allowing a maximum amount of work to be done, and cooled exhaust gas is released at the end of the cycle. Assuming the engine exhibits the highest efficiency possible, which of the following statements concerning the exhaust gas...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT