Question

In: Statistics and Probability

Suppose R1,R2,...,Rn are mutually independent and uniformly distributed random variables on [0,1]. Assume R(1) ≤ R(2)...

Suppose R1,R2,...,Rn are mutually independent and uniformly distributed random variables on [0,1]. Assume R(1) ≤ R(2) ≤···≤ R(n) are the order statistics of the R1,R2,...,Rn. It is given that 1 ≤ a < b ≤ n. What is the distribution of R(b)−R(a)?

Solutions

Expert Solution


Related Solutions

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ,...
Let X and Y be independent Gaussian(0,1) random variables. Define the random variables R and Θ, by R2=X2+Y2,Θ = tan−1(Y/X).You can think of X and Y as the real and the imaginary part of a signal. Similarly, R2 is its power, Θ is the phase, and R is the magnitude of that signal. (b) Find the probability density functions of R and Θ. Are R and Θ independent random variables?
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A)...
Let ? and ? be two independent uniform random variables such that ?∼????(0,1) and ?∼????(0,1). A) Using the convolution formula, find the pdf ??(?) of the random variable ?=?+?, and graph it. B) What is the moment generating function of ??
Let X and Y be two independent random variables, and g : R2 --> R an...
Let X and Y be two independent random variables, and g : R2 --> R an arbitrary bivariate function. 1) Suppose that X and Y are continuous with densities fX and fY . Prove that for any y ? R withfY (y) > 0, the conditional density of the random variable Z = g(X, Y ) given Y = y is the same as the density of the random variable W = g(X, y). 2) Suppose that X and Y...
1. Assume that X and Y are two independent discrete random variables and that X~N(0,1) and...
1. Assume that X and Y are two independent discrete random variables and that X~N(0,1) and Y~N(µ,σ2).                 a. Derive E(X3) and deduce that E[((Y-µ)/σ)3] = 0                 b. Derive P(X > 1.65). With µ = 0.5 and σ2 = 4.0, find z such that P(((Y-µ)/σ) ≤ z) = 0.95. Does z depend on µ and/or σ? Why
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT