Question

In: Electrical Engineering

Consider a Si p-n junction at T=300K with the following parameters: Na=5x1017cm-3, Nd=5x1017cm-3 Dn=25 cm2 /s...

Consider a Si p-n junction at T=300K with the following parameters: Na=5x1017cm-3, Nd=5x1017cm-3 Dn=25 cm2 /s D P=10 cm2 /s τn=5x10-7 s τP=5x10-7 s. Let the photocurrent density be 20 mA/cm2 . (a) Calculate the maximum power delivered to the load assuming that the fill factor is 0.8. (b) By what factor will the output power increase from (a) if the solar intensity is increase by a factor of 10 due to light concentration. Comment on your results

Solutions

Expert Solution

u can text me if u have any doubt regarding the solution.


Related Solutions

Consider an infinitely large, homogeneous n-type Si at T = 300K doped to Nd = 2.5...
Consider an infinitely large, homogeneous n-type Si at T = 300K doped to Nd = 2.5 x 1015cm-3 . Assume that, for t < 0, the semiconductor is in thermal equilibrium and that, for t ≥ 0, a uniform generation rate exists in the crystal. (a) Determine the excess minority carrier concentration as a function of time assuming the condition of low-level injection. (b) Assume a generation rate of 4 x 1020 cm-3 s -1 . And let τpo =...
A p-n step junction is made in silicon with Na = 1.5x1016 cm-3 and Nd =...
A p-n step junction is made in silicon with Na = 1.5x1016 cm-3 and Nd = 6.5x1016 cm-3. Assume T = 300K. Calculate the following: (a) the built-in potential Vbi (b) the total depletion layer width W and depletion into the n (Wn) and p (Wp) sides at zero bias (c) the maximum electric field at zero bias (d) the maximum electric field at 7V reverse bias (e) Sketch the energy band diagram, charge density distribution, electric field distribution, and...
A Si npn transistor at T = 300K has an area of 10-3 cm2 , neutral...
A Si npn transistor at T = 300K has an area of 10-3 cm2 , neutral base width of 1µm, and doping concentrations of NE= 1018 cm-3, NB = 1017 cm-3, NC = 1016 cm-3. Other semiconductor parameters are DB= DE =20 cm2/s, τE0= τB0= =10-7s, and τC0=10-6 s. Assuming the transistor is biased in the active region and the recombination factor is unity, calculate current for (a) VBE = 0.5V; (b)IE =1.5 mA, (c) IB = 2µA
An ideal long-base Si p-n diode has Na = 1017 cm-3, Nd = 7x1016 cm-3 and...
An ideal long-base Si p-n diode has Na = 1017 cm-3, Nd = 7x1016 cm-3 and a cross-sectional area of 10-3 cm2. (i) If τn = τp = 1 µs, calculate the current flowing through the junction under an applied bias of 0.4V. Repeat your calculation for a temperature of 500 K. (ii) Sketch the thermal equilibrium band edge diagram of the p-n junction for both temperatures
1) Given a silicon p-n junction diode. Consider there are ND = 1E16 cm-3 in its...
1) Given a silicon p-n junction diode. Consider there are ND = 1E16 cm-3 in its conduction band while NA = 1E17 cm-3 . (i) At thermal equilibrium, calculate built-in potential (Vbi) using band diagram (no formulae). On the n-side, estimate the electron concentration and flux at q*Vbi above the conduction band. (ii) Now a forward bias VA is applied. On the n-side, estimate the electron concentration and flux at the same energy level at part (i). Hence show that...
Q. Consider a silicon p-n junction solar cell of area 4 cm2. If the doping of...
Q. Consider a silicon p-n junction solar cell of area 4 cm2. If the doping of the solar cell are NA = 1.0x1016cm-3 and ND = 1.5x1019 cm-3 and given τn = 10 μs, τp = 0.5 μs, Dn = 9.3 cm2 /s, Dp = 2.5 cm2 /s and IL = 95 mA, (a) calculate and plot the I-V characteristics of the solar cell, (b) calculate the open-circuit voltage and (c) determine the maximum output power of the solar cell,...
Consider a Si p-n junction connected p-type and n-type semiconductors each doped 1017 /cm3 concentration, in...
Consider a Si p-n junction connected p-type and n-type semiconductors each doped 1017 /cm3 concentration, in temperature 50K, 350K, 650K Suppose occur energy state of conduction band quantization due to the junction make very small. If Si p-n junction has only three DOS(density of state) in conduction band and valence band, Discuss band diagrams and I-V curve.
For a silicon one-sided abrupt junction with NA = 2 × 10^19 cm–3 and ND =10^18...
For a silicon one-sided abrupt junction with NA = 2 × 10^19 cm–3 and ND =10^18 cm–3, calculate the junction capacitance at zero bias and a reverse bias of 4 V (T = 300 K). Draw the flat energy band diagram
Two moles( n= 2) of an Idea gas with temperature T = 300K , P =...
Two moles( n= 2) of an Idea gas with temperature T = 300K , P = 2bar and molar heat capacity Cvm = 1.5R are subjected consecutively to the following steps: 1) Gas is compressed Isothermally and reversibly to a pressure of 5bar 2) Following this the gas is expanded into vacuum until it volume reach V = 20 L 3) Finally there is a Isobaric change in temp to T = 350K Question: Calculate the total heat exchanged during...
State (Si) P r(Si) Return Growth Fund (S) Return of Large Cap Fund (B) Boom .25...
State (Si) P r(Si) Return Growth Fund (S) Return of Large Cap Fund (B) Boom .25 30% 5.00% Moderate Growth .20 12.50% -4.50% Low Growth .30 6.00% 7.00% Recession .25 -20.00% 11.50% If the risk free rate is 3%. Compute the weights of the Optimal Risky Portfolio
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT