In: Mechanical Engineering
Force (N) |
time (s) |
Elongation (t*0.05 mm/s) |
Engineering stress(Mpa) |
Engineering Strain |
|||
0 |
0 |
0 |
0 |
0 |
|||
1500 |
5 |
0.25 |
53.05978069 |
0.00625 |
|||
5000 |
10 |
0.5 |
176.8659356 |
0.0125 |
|||
9250 |
20 |
1 |
327.2019809 |
0.025 |
|||
11250 |
25 |
1.25 |
397.9483551 |
0.03125 |
|||
11750 |
30 |
1.5 |
415.6349487 |
0.0375 |
|||
11500 |
32.5 |
1.625 |
406.7916519 |
0.040625 |
|||
12000 |
35 |
1.75 |
424.4782455 |
0.04375 |
|||
14250 |
50 |
2.5 |
504.0679165 |
0.0625 |
|||
15250 |
60 |
3 |
539.4411036 |
0.075 |
|||
16000 |
70 |
3.5 |
565.970994 |
0.0875 |
|||
16750 |
85 |
4.25 |
592.5008843 |
0.10625 |
|||
17250 |
100 |
5 |
610.1874779 |
0.125 |
|||
17500 |
132.5 |
6.625 |
619.0307747 |
0.165625 |
|||
17250 |
170 |
8.5 |
610.1874779 |
0.2125 |
|||
17000 |
180 |
9 |
601.3441811 |
0.225 |
|||
16500 |
190 |
9.5 |
583.6575875 |
0.2375 |
|||
16250 |
195 |
9.75 |
574.8142908 |
0.24375 |
|||
16000 |
200 |
10 |
565.970994 |
0.25 |
|||
15000 |
210 |
10.5 |
530.5978069 |
0.2625 |
|||
13250 |
220 |
11 |
468.6947294 |
0.275 |
|||
12697.1 |
222.5 |
11.125 |
449.1368942 |
0.278125 |
|||
Initial Length (mm) |
Initial Diameter(mm) |
Area = pi*r^2 |
|||||
40 |
6 |
28.27 |
|||||
Maximum load capacity: 50,000 N Test rate: 3 mm/min - 0.05 mm/s Steel A Steel B Initial length, Lo 40 mm 40 mm Initial diameter, do 6 mm 6 mm Final length, Lf 48 mm 52 mm Final diameter, df 4.2 mm 3.1 mm
From the data given in excel file, calculate:
(b) Tensile strength, modulus of elasticity, modulus of resilience, % elongation and % reduction in area.
(c) Plot both engineering stress strain curve and true stress strain curve.
(d) Compare the tensile behaviour of steel A and B in one paragraph
A) ENGINEERING STRESS-STRAIN CURVE
B) TRUE STRAIN = ln ( 1 + ENGINEERING STRAIN )
TRUE STRESS = ENGINEERING STRESS ( 1 + ENGINEERING STRAIN )
C) TRUE STRESS-STRAIN CURVE
D)
TENSILE STRENGTH = MAX LOAD / INITIAL AREA = 17500 / 28.27 = 619.03 N/ = 619.03MPa
MODULUS OF ELASTICITY = SLOPE UNDER PROPORTIONALITY LIMIT
= SLOPE [STRESS (POINT(4) - POINT (3)) / STRAIN {POINT(4) - POINT(3)) ]
= (327.2019809 - 176.8659356 ) / (0.025-0.0125)
= 12026.88 MPa = 12.026 GPa
MODULUS OF RESILIENCE = AREA UNDER PROPORTIONALITY LIMIT
= AREA OF TRIANGLE = 0.5 * STRESS(POINT(5) - POINT(1)) * STRAIN(POINT(5)-POINT(1)
=0.5 * ( 397.8482551-0) * (0.03125-0) = 6.21794 MPa
E) PERCENT ELONGATION (STEEL A) = (48 -40 / 40 ) *100 = 20 %
PERCENT ELONGATION (STEEL B) = (52-40 /40 )*100 = 30%
AREA REDUCTION (STEEL A) = (FINAL AREA -INITIAL AREA) / INITIAL AREA *100
INITIAL AREA (Ai) =pi * 3*3 =28.27 ,FINAL AREA (Af) = pi * 2.1*2.1 =13.85
AREA REDUCTION = (28.27 - 13.85 ) *100 / 28.27 = 51 %
F)PERCENT REDUCTION (STEEL B):
INITIAL AREA (Ai) =pi * 3*3 =28.27 ,FINAL AREA = pi * 1.55*1.55 =7.5476
AREA REDUCTION = (28.27 - 7.5476 )*100 / 28.27 = 73.3%
G) MORE THE ELONGATION MORE WILL BE THE TENSILE STRENGTH OF THE MATERIAL ,HENCE STEEL B HAS MORE TENSILE STRENGTH AS IT'S ELONAGTION IS 30% COMPARED TO STEEL A OF ELONGATION 20%