In: Mechanical Engineering
| 
 Force (N)  | 
 time (s)  | 
 Elongation (t*0.05 mm/s)  | 
 Engineering stress(Mpa)  | 
 Engineering Strain  | 
|||
| 
 0  | 
 0  | 
 0  | 
 0  | 
 0  | 
|||
| 
 1500  | 
 5  | 
 0.25  | 
 53.05978069  | 
 0.00625  | 
|||
| 
 5000  | 
 10  | 
 0.5  | 
 176.8659356  | 
 0.0125  | 
|||
| 
 9250  | 
 20  | 
 1  | 
 327.2019809  | 
 0.025  | 
|||
| 
 11250  | 
 25  | 
 1.25  | 
 397.9483551  | 
 0.03125  | 
|||
| 
 11750  | 
 30  | 
 1.5  | 
 415.6349487  | 
 0.0375  | 
|||
| 
 11500  | 
 32.5  | 
 1.625  | 
 406.7916519  | 
 0.040625  | 
|||
| 
 12000  | 
 35  | 
 1.75  | 
 424.4782455  | 
 0.04375  | 
|||
| 
 14250  | 
 50  | 
 2.5  | 
 504.0679165  | 
 0.0625  | 
|||
| 
 15250  | 
 60  | 
 3  | 
 539.4411036  | 
 0.075  | 
|||
| 
 16000  | 
 70  | 
 3.5  | 
 565.970994  | 
 0.0875  | 
|||
| 
 16750  | 
 85  | 
 4.25  | 
 592.5008843  | 
 0.10625  | 
|||
| 
 17250  | 
 100  | 
 5  | 
 610.1874779  | 
 0.125  | 
|||
| 
 17500  | 
 132.5  | 
 6.625  | 
 619.0307747  | 
 0.165625  | 
|||
| 
 17250  | 
 170  | 
 8.5  | 
 610.1874779  | 
 0.2125  | 
|||
| 
 17000  | 
 180  | 
 9  | 
 601.3441811  | 
 0.225  | 
|||
| 
 16500  | 
 190  | 
 9.5  | 
 583.6575875  | 
 0.2375  | 
|||
| 
 16250  | 
 195  | 
 9.75  | 
 574.8142908  | 
 0.24375  | 
|||
| 
 16000  | 
 200  | 
 10  | 
 565.970994  | 
 0.25  | 
|||
| 
 15000  | 
 210  | 
 10.5  | 
 530.5978069  | 
 0.2625  | 
|||
| 
 13250  | 
 220  | 
 11  | 
 468.6947294  | 
 0.275  | 
|||
| 
 12697.1  | 
 222.5  | 
 11.125  | 
 449.1368942  | 
 0.278125  | 
|||
| 
 Initial Length (mm)  | 
 Initial Diameter(mm)  | 
 Area = pi*r^2  | 
|||||
| 
 40  | 
 6  | 
 28.27  | 
|||||
Maximum load capacity: 50,000 N Test rate: 3 mm/min - 0.05 mm/s Steel A Steel B Initial length, Lo 40 mm 40 mm Initial diameter, do 6 mm 6 mm Final length, Lf 48 mm 52 mm Final diameter, df 4.2 mm 3.1 mm
From the data given in excel file, calculate:
(b) Tensile strength, modulus of elasticity, modulus of resilience, % elongation and % reduction in area.
(c) Plot both engineering stress strain curve and true stress strain curve.
(d) Compare the tensile behaviour of steel A and B in one paragraph
A) ENGINEERING STRESS-STRAIN CURVE

B) TRUE STRAIN = ln ( 1 + ENGINEERING STRAIN )
TRUE STRESS = ENGINEERING STRESS ( 1 + ENGINEERING STRAIN )

C) TRUE STRESS-STRAIN CURVE

D)
TENSILE STRENGTH = MAX LOAD / INITIAL AREA =
17500 / 28.27 = 619.03 N/
= 619.03MPa
MODULUS OF ELASTICITY = SLOPE UNDER PROPORTIONALITY LIMIT
= SLOPE [STRESS (POINT(4) - POINT (3)) / STRAIN {POINT(4) - POINT(3)) ]
= (327.2019809 - 176.8659356 ) / (0.025-0.0125)
= 12026.88 MPa = 12.026 GPa
MODULUS OF RESILIENCE = AREA UNDER PROPORTIONALITY LIMIT
= AREA OF TRIANGLE = 0.5 * STRESS(POINT(5) - POINT(1)) * STRAIN(POINT(5)-POINT(1)
=0.5 * ( 397.8482551-0) * (0.03125-0) = 6.21794 MPa
E) PERCENT ELONGATION (STEEL A) = (48 -40 / 40 ) *100 = 20 %
PERCENT ELONGATION (STEEL B) = (52-40 /40 )*100 = 30%
AREA REDUCTION (STEEL A) = (FINAL AREA -INITIAL AREA) / INITIAL AREA *100
INITIAL AREA (Ai) =pi * 3*3 =28.27 
 ,FINAL AREA (Af) = pi * 2.1*2.1 =13.85 
AREA REDUCTION = (28.27 - 13.85 ) *100 / 28.27 = 51 %
F)PERCENT REDUCTION (STEEL B):
INITIAL AREA (Ai) =pi * 3*3 =28.27 
 ,FINAL AREA = pi * 1.55*1.55 =7.5476 
AREA REDUCTION = (28.27 - 7.5476 )*100 / 28.27 = 73.3%
G) MORE THE ELONGATION MORE WILL BE THE TENSILE STRENGTH OF THE MATERIAL ,HENCE STEEL B HAS MORE TENSILE STRENGTH AS IT'S ELONAGTION IS 30% COMPARED TO STEEL A OF ELONGATION 20%