In: Electrical Engineering
(Steps)Plot a stress-strain curve using Matlab(cross sectional area 30 mm^2)
Force (kN) | Strain |
8.59E-02 | 0.000054 |
2.55E-01 | 0.000054 |
2.82E-01 | 0.000054 |
2.95E-01 | 0.000054 |
3.09E-01 | 0.000054 |
Step 1:Divide the applied force by the cross-sectional area to be able to get applied stress ?. Also, convert to MPa.
2. Graph the stress-strain curve with strain as the abscissa and stress as the ordinate.
3. Make sure to label the axes with the variable (? or ?) and the correct units.
4. Add a title.
5. Calculate and label the yield stress ?? and ultimate stress ?? on the stress-strain curve.
6. Compute the elasticity ? in GPa. Do this by solving for the slope of the initial linear portion of the stress-strain curve. Please label it on the curve.
MATLAB CODE:
clc
clear all
close all
Strain = [0.000054;0.000054;0.000054;0.000054;0.000054];
Force = [8.59e-02;2.55e-01;2.82e-01;2.95e-01;3.09e-01]*10e3; %
Force units are in Newton
Area = 30*((1e-03)^2); % Cross sectional area units are in square
meters
Stress = Force/Area; % Stress units are in Pascal
Stress = Stress*1e-06; % Converting Stress units from Pascal to
Mega Pascal i.e.,Mpa
Table1 = table(Force,Strain);
Table2 = table(Stress,Strain);
disp(Table1)
disp(Table2)
plot(Strain,Stress,'ro') % Plots the points
grid on
xlabel('Strain')
ylabel('Stress( Mpa)')
title('Stress-Strain Curve')
xlim([0.000053 0.000055])
figure
plot(Strain,Stress,'r') % Plot produced by joining the
points
grid on
xlabel('Strain')
ylabel('Stress( Mpa)')
title('Stress-Strain Curve')
xlim([0.000053 0.000055])
OUTPUT:
Force Strain
_____ _______
859 5.4e-05
2550 5.4e-05
2820 5.4e-05
2950 5.4e-05
3090 5.4e-05
Stress Strain
______ _______
28.633 5.4e-05
85 5.4e-05
94 5.4e-05
98.333 5.4e-05
103 5.4e-05