In: Statistics and Probability
Please find the Standard Deviation of each option
Option A |
Option B |
|||
Payout |
Probability |
Payout |
Probability |
|
$200 |
0.05 |
$100 |
0.01 |
|
$ 50 |
0.10 |
$ 55 |
0.14 |
|
$ 25 |
0.15 |
$ 35 |
0.15 |
|
$ 5 |
0.20 |
$ 29 |
0.20 |
|
$ 1 |
0.50 |
$ 1 |
0.50 |
MEAN:
Let x be a discrete r.v. with values i=1,2,...,n represent the probability distribution of a r.v. x denote by E(X) is defined as
VARIANCE:
Let x be a discrete r.v. with if i=1,2,...,n represent the probability distribution of a r.v. x denote by is defined as,
STANDARD DEVIATION:
The positive square root of the variance is called the standard deviation (SD).
OPTION A:
x | pi | pi*x | pi*x*x | |||
200 | 0.05 | 10 | 2000 | |||
50 | 0.1 | 5 | 250 | |||
25 | 0.15 | 3.75 | 93.75 | |||
5 | 0.2 | 1 | 5 | |||
1 | 0.5 | 0.5 | 0.5 | |||
total | 1 | 20.25 | 2349.25 |
E(X^2)= | 2349.25 |
Mean=E(X)= | 20.25 |
(E(X))^2= | 410.0625 |
Variance=V(X)= | 1939.188 |
Standard Deviation= | 44.03621 |
Standard deviation of option A is 44.03621
OPTION B:
x | pi | pi*x | pi*x*x | |||
100 | 0.01 | 1 | 100 | |||
55 | 0.14 | 7.7 | 423.5 | |||
35 | 0.15 | 5.25 | 183.75 | |||
29 | 0.2 | 5.8 | 168.2 | |||
1 | 0.5 | 0.5 | 0.5 | |||
Total | 1 | 20.25 | 875.95 |
E(X^2)= | 875.95 |
Mean=E(X)= | 20.25 |
(E(X))^2= | 410.0625 |
Variance=V(X)= | 465.8875 |
Standard Deviation= | 21.58443 |
Standard deviation of option B is 21.58443