In: Statistics and Probability
Find the probability that the Normal random variable with mean 20 and standard deviation 3.2 will generate an outlier (outside the inner fences) observation. Remember that the lower (upper) inner fence is 1.5*IQR below (above) the first (third) quartile.
a. |
0.0035 |
|
b. |
0.0051 |
|
c. |
0.0058 |
|
d. |
0.0062 |
|
e. |
0.0070 |
µ= 20
σ = 3.2
P(X≤x) = 0.2500
Z value at 0.25 =
-0.6745 (excel formula =NORMSINV(
0.25 ) )
z=(x-µ)/σ
so, X=zσ+µ= -0.674 *
3.2 + 20
X = 17.84 (answer)
so, first quartile, Q1 = 17.84
--------------------------
P(X≤x) = 0.7500
Z value at 0.75 =
0.6745 (excel formula =NORMSINV(
0.75 ) )
z=(x-µ)/σ
so, X=zσ+µ= 0.674 *
3.2 + 20
X = 22.16 (answer)
so, third quartile, Q3 = 22.16
--------------
IQR = Q3-Q1 = 22.16-17.84 = 4.32
range of inner fence = (Q1 - 1.5IQR , Q3+1.5IQR) = 11.36 , 28.64
so,
P ( 11.3600 < X <
28.6400 )
=P( (11.36-20)/3.2 < (X-µ)/σ < (28.64-20)/3.2 )
P ( -2.700 < Z <
2.700 )
= P ( Z < 2.700 ) - P ( Z
< -2.700 ) =
0.9965 - 0.0035 =
0.9930
P(outside the inner fence) = 1 - 0.9930 = 0.0070
please revert for doubt..