In: Physics
A) For hydrogen, find the frequency of light emitted in
the transition from the 130th orbit to the 122th
orbit.
B) For hydrogen, find the frequency of light absorbed in
the transition from the 168th orbit to the 173th
orbit.
(A)
here we can use Bohr formula,
1 / λ = RH { 1/n12 - 1/n22 }
here , n1 = 120 , n2 = 130 , RH =1.09678 x 10-2 nm-1
1 / λ = RH { 1/n12 - 1/n22 }
= RH { 1/ 1202 - 1/1302}
= RH { 1/14400 - 1/16900}
= RH { 0.0000694444 - 0.00005917159}
= RH { 0.00001027281}
1 / λ = 1.09678 x 10-2 X 0.00001027281
But we know that ,
λ = c/f
c = speed of light
f = frequency
1 / λ = 1.09678 x 10-2 X 0.00001027281
1 / (c/f) = 1.09678 x 10-2 X 0.00001027281
f/c = 1.09678 x 10-2 X 0.00001027281
f = 1.09678 x 10-2 X 0.00001027281 x c
f = 1.09678 x 10-2 X 0.00001027281 x 3 x 108 { c = 3 x 108 }
f = 0.00003380103 x 106
f = 33.80 Hz
(part-B)
1 / λ = RH { 1/n12 - 1/n22 }
λ = c/f
hence ,
f/c = RH { 1/n12 - 1/n22 }
n1 = 168 , n2 = 173 , RH =1.09678 x 10-2 nm-1 , C = 3 x 108 m/s
f/c = RH { 1/1682- 1/1732}
f/c = RH { 1/28224- 1/29929}
f/c = RH { 0.00003543083- 0.0000334124}
f/c = RH { 0.00000201843}
f = RH x c x { 0.00000201843}
f = 1.09678 x 10-2 x 3 x 108 x 0.00000201843
f = 0.00000664132 x 106
f = 6.64 Hz