In: Physics
What are the possible wavelengths of light that could be emitted by a gas of hydrogen atoms in the third-excited (n = 4) state?
possible transactions :
n=4 --> n = 3
n=4 --> n = 2
n=4 --> n = 1
n=3 --> n = 2
n=3 --> n = 1
n=2 --> n = 1
wavelength emited photon,
1/lamda = R*(1/nf^2 - 1/ni^2)
we know, Rydburg constant, R = 1.097*10^7 m^-1
for transaction : n=4 --> n = 3
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/3^2 - 1/4^2)
lamda = 1.88*10^-6 m <<<<<<------------------Answer
for transaction : n=4 --> n = 2
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/2^2 - 1/4^2)
lamda = 4.87*10^-7 m <<<<<<------------------Answer
for transaction : n=4 --> n = 1
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/1^2 - 1/4^2)
lamda = 9.72*10^-8 m <<<<<<------------------Answer
for transaction : n=3 --> n = 2
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/2^2 - 1/3^2)
lamda = 6.56*10^-7 m <<<<<<------------------Answer
for transaction : n=3 --> n = 1
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/1^2 - 1/3^2)
lamda = 1.03*10^-7 m <<<<<<------------------Answer
for transaction : n=2 --> n = 1
1/lamda = R*(1/nf^2 - 1/ni^2)
1/lamda = 1.097*10^7*(1/1^2 - 1/2^2)
lamda = 1.22*10^-7 m <<<<<<------------------Answer