In: Chemistry
Calculate the frequency of the light emitted when an electron in a hydrogen atom makes each of the following transitions. Express in inverse seconds.
a) n=4?n=3
b) n=5?n=1
c) n=5?n=4
d) n=6?n=5
usefull formulas
E = (-2.18 * 10^-18 ) [1/(n2)2 - 1/(n12] Jouls
n2 = higher value , n1 =lower value
E = h v
h = 6.625 x 10^-34 J S
a ) solution :
E = (-2.18 * 10^-18 ) [1/(n2)2 - 1/(n12]
= (-2.18 * 10^-18 ) [1/(4)2 - 1/( 32)]
= 1.06 x 10^-19
E = h v
v = E / h
= 1.06 x 10^-19 / 6.625 x 10^-34
= 1.60 x 10^14 sec-1
frequency = 1.60 x 10^14 sec-1
b ) solution :
E = (-2.18 * 10^-18 ) [1/(n2)2 - 1/(n12]
= (-2.18 * 10^-18 ) [1/(5)2 - 1/( 12)]
= 2.09 x 10^-18
E = h v
v = E / h
= 2.09 x 10^-18 / 6.625 x 10^-34
= 3.16 x 10^15 sec-1
frequency = 3.16x 10^15 sec-1
c ) solution :
E = (-2.18 * 10^-18 ) [1/(n2)2 - 1/(n12]
= (-2.18 * 10^-18 ) [1/(5)2 - 1/( 42)]
= 4.90 x 10^-20
E = h v
v = E / h
= 4.90 x 10^-20 / 6.625 x 10^-34
= 7.40 x 10^13 sec-1
frequency = 7.40x 10^13 sec-1
d ) solution :
E = (-2.18 * 10^-18 ) [1/(6)2 - 1/(52]
= (-2.18 * 10^-18 ) [1/(5)2 - 1/( 42)]
= 2.66 x 10^-20
E = h v
v = E / h
= 2.66 x 10^-20 / 6.625 x 10^-34
= 4.02 x 10^13 sec-1
frequency = 4.02x 10^13 sec-1