Question

In: Physics

When high voltage is run through hydrogen, light is emitted that is concentrated in three areas...

When high voltage is run through hydrogen, light is emitted that is concentrated in three areas of the visible spectrum: red, cyan, and violet. How did Bohr explain this, and how did de Broglie alter that explanation to extend it to the emission spectrum of other elements?

Solutions

Expert Solution

please up vote.. thanks


Related Solutions

What is the frequency, in sāˆ’1, of the light emitted when the electron in a hydrogen...
What is the frequency, in sāˆ’1, of the light emitted when the electron in a hydrogen atom drops from the energy level ni = 12 to nf = 5? Calculate the de Broglie wavelength, in nanometers, associated with a 145 g baseball traveling at a speed of 179 km/h? How many orbitals have the values n = 4, l = 3, and ml = -2? Without referring to any tables or listings in the text, name the elements provided for...
Calculate the frequency of the light emitted when an electron in a hydrogen atom makes each...
Calculate the frequency of the light emitted when an electron in a hydrogen atom makes each of the following transitions. Express in inverse seconds. a) n=4?n=3 b) n=5?n=1 c) n=5?n=4 d) n=6?n=5
5. Find all the wavelengths of visible light emitted when Hydrogen is heated. Approximate visible light...
5. Find all the wavelengths of visible light emitted when Hydrogen is heated. Approximate visible light to have the range from 400 nm to 700 nm. No points for only telling the wavelengths. Points will be for showing how you found these wavelengths (mention the transitions).
What are the possible wavelengths of light that could be emitted by a gas of hydrogen...
What are the possible wavelengths of light that could be emitted by a gas of hydrogen atoms in the third-excited (n = 4) state?
A) For hydrogen, find the frequency of light emitted in the transition from the 130th orbit...
A) For hydrogen, find the frequency of light emitted in the transition from the 130th orbit to the 122th orbit. B) For hydrogen, find the frequency of light absorbed in the transition from the 168th orbit to the 173th orbit.
What is the wavelength ( in nanometers ) of the light emitted when an electron in...
What is the wavelength ( in nanometers ) of the light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 5 to an orbital in n = 3 ? Your answer should have four significant figures.
Calculate the energy (J) of the photon emitted when an electron in the hydrogen atom falls...
Calculate the energy (J) of the photon emitted when an electron in the hydrogen atom falls from n=5 to n=2 . Use 2.178 x 10-18 J for the constant in the Bohr equation. Answer should be in scientific notation, e.g. 3000 = 3E3 I have no idea how to get this problem help me!!
What is the frequency of the photons emitted by hydrogen atoms when they undergo transitions from...
What is the frequency of the photons emitted by hydrogen atoms when they undergo transitions from n = 5 to n = 2? Calculate in s-1 In which region of the electromagnetic spectrum does this radiation occur?
i need the answers to all of them   Blue light is emitted when electrons in a...
i need the answers to all of them   Blue light is emitted when electrons in a substance make a particular energy ā€“ level transition. If yellow light were emitted instead from the same substance, the light would correspond (a) a greater change of energy in the atom (b) a lesser change of energy in the atom (c) none of the above Red light is emitted when electrons in a substance make a energy ā€“ level transition. If BLUE light were...
The current through two identical light bulbs connected in series is 0.25 A. The total voltage...
The current through two identical light bulbs connected in series is 0.25 A. The total voltage across both bulbs is 120 V. The resistance of a single light bulb is a. 48 ohms. b. 240 ohms. c. 480 ohms.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT