Question

In: Physics

A spring (k = 100 N/m), which can be stretched or compressed, is placed on a...

A spring (k = 100 N/m), which can be stretched or compressed, is placed on a frictionless table. A 5.00-kg mass is attached to one end of the spring, and the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 4.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. (a) Determine the function x(t). (b) Find the magnitudes of maximum velocity and maximum acceleration. (c) Find the total energy of the oscillator. (d) Find the position, velocity, and acceleration of the mass at time t = 3.00 s.

Solutions

Expert Solution


Related Solutions

1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g...
1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g toy straight up. How high does the toy fly? 2. Two blocks are attached together with a piece of string. Block #1 (3 kg) slides along a rough incline of 30º and block #2 (2 kg) hangs off the end of the incline. If the blocks accelerate at 4.5 m/s2 in the directions shown, determine the tension in the string and the coefficient of...
A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed...
A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is placed at its free end on a frictionless slope which makes an angle of 41 ? with respect to the horizontal. The spring is then released.  (Figure 1) Part A If the mass is not attached to the spring, how far up the slope from the compressed point will the mass move...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed 0.13 mm . When fired, 80.9 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.10×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
1. The static spring constant k (in N/m) can be determined from: Select Answer: - the...
1. The static spring constant k (in N/m) can be determined from: Select Answer: - the reciprocal of the slope of a graph of displacement (in meters) as a function of total added weight (in Newtons) - the slope of a graph of final position (in cm) as a function of total added mass (in grams)     - the y-intercept of a graph of displacement (in meters) as a function of total added weight (in Newtons) - the slope of a...
A spring is compressed by 15 cm, which requires 150 N of force. What is the...
A spring is compressed by 15 cm, which requires 150 N of force. What is the spring constant of the spring? How much potential energy is stored in the spring? A 20 kg box is attached to the spring. This arrangement is placed such that the spring is horizontal and the box will slide along a frictionless, horizontal track. What is the maximum speed of the box after the spring is released?
a 100 kg student is compressed 50 cm on a spring with a spring constant of...
a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the student travels up...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between...
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.450 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume...
A 2kg mass attached to a spring with k = 120 N / m is oscillating...
A 2kg mass attached to a spring with k = 120 N / m is oscillating in an oil tub, which dampens oscillations. A) If the oil damping constant is b = 10kg / s, how long will it take for the amplitude of the oscillations to decrease to 2% of its original value? B) What should be the damping constant to reduce the amplitude of the oscillations by 99% in 1 second?
6. The dynamic spring constant k (in N/m) determined using an oscillating vertical spring is directly...
6. The dynamic spring constant k (in N/m) determined using an oscillating vertical spring is directly related to: - the reciprocal of the slope of a graph of period squared (in s2) as a function of total added mass (in kg) - the slope of a graph of period squared (in s2) as a function of total added mass (in kg)     - the reciprocal of the slope of a graph of period (in s) as a function of total added...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT