Question

In: Physics

1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g...

1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g toy straight up. How high does the toy fly?

2. Two blocks are attached together with a piece of string. Block #1 (3 kg) slides along a rough incline of 30º and block #2 (2 kg) hangs off the end of the incline. If the blocks accelerate at 4.5 m/s2 in the directions shown, determine the tension in the string and the coefficient of kinetic friction between block #1 and the incline.

Solutions

Expert Solution



Related Solutions

A spring (k = 100 N/m), which can be stretched or compressed, is placed on a...
A spring (k = 100 N/m), which can be stretched or compressed, is placed on a frictionless table. A 5.00-kg mass is attached to one end of the spring, and the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 4.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. (a) Determine the function x(t). (b) Find the magnitudes of maximum velocity...
a 100 kg student is compressed 50 cm on a spring with a spring constant of...
a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the student travels up...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 degrees above the horizontal and comes to a momentary stop before sliding back down. The system is...
As shown below, a 100 kg student is compressed 50 cm on a spring with a...
As shown below, a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the...
A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed...
A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.2 kg is placed at its free end on a frictionless slope which makes an angle of 41 ? with respect to the horizontal. The spring is then released.  (Figure 1) Part A If the mass is not attached to the spring, how far up the slope from the compressed point will the mass move...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed 0.13 mm . When fired, 80.9 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.10×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
A 20 cm long horizontal spring (k= 200 N/m) is attached to a wall. A 2...
A 20 cm long horizontal spring (k= 200 N/m) is attached to a wall. A 2 kg box is attached to the other end. You pull the box 3 cm, displacing the spring from equilibrium. Assume the floor is frictionless. If the box is released from rest at t = 0 s: Write an equation describing the position of the box at some arbitrary time “t”. Go ahead and fill in the values for amplitude, phase angle, and angular frequency....
1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is...
1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is the elastic potential energy of the spring? 2. You have a piano of mass 1,946 kg, which is suspended 14 m above the ground. If we decide that the zero of our height coordinates is at the ground, what is the gravitational potential energy of the piano? 3. You have a kinetic friction force of 42.5 acting on a box that is moving across...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT