Question

In: Physics

A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current...

A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current in the solenoid is increasing at a uniform rate of 64.0 A/s

What is the magnitude of the induced electric field at a point 0.520 cm

from the axis of the solenoid? (in V/m)

What is the magnitude of the induced electric field at a point 1.30 cm

from the axis of the solenoid? (in V/m)

Solutions

Expert Solution

Induced emf inside solenoid is given by,

   .......................(1)

where is magnetic flux, B is magnetic flux density and A is area of crosssection of solenoid

Magnetic field B in solenoid is given by,

.......................(2)

where is permeability of free space, n is number of turns per unit length and

I is current passing through solenoid .

from eqn.(1) and eqn.(2), we get,

Electric field E is obtained from ,

Hence E = / ( 2r )

Electric field at r = 0.52 cm = 5.935 10-5 / ( 2 0.52 10-2 ) = 1.817 10-3 V/m

Electric field at r = 1.3 cm = 5.935 10-5 / ( 2 1.3 10-2 ) = 7.266 10-4 V/m


Related Solutions

A long, thin solenoid has 870 turns per meter and radius 3.00cm . The current in...
A long, thin solenoid has 870 turns per meter and radius 3.00cm . The current in the solenoid is increasing at a uniform rate of 65.0A/s . A)What is the magnitude of the induced electric field at a point 0.550cm from the axis of the solenoid? B)What is the magnitude of the induced electric field at a point 1.00cm from the axis of the solenoid?
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in the solenoid is increasing at a uniform rate dI/dt. The induced electric eld at a point near the center of the solenoid and 3.80 cm from its axis is 8.00 10 -5 V/m. Calculate dI/dt
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 7.00 sin 120?t, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 120πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) E = (b) What is the direction of this electric...
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) (b) What is the direction of this electric field when the...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
A long solenoid has 110 turns/cm and carries current i. An electron moves within the solenoid...
A long solenoid has 110 turns/cm and carries current i. An electron moves within the solenoid in a circle of radius 2.54 cm perpendicular to the solenoid axis. The speed of the electron is 0.0635c (c = speed of light, equal to 2.998 × 108 m/s). Find the current i in the solenoid.
A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a)...
A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a) Find its inductance. mH (b) Find the rate at which current must change through it to produce an emf of 90 mV. (Enter the magnitude.) A/s
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. c) Now, construct an RL circuit using an ideal battery that has potential difference 5 V, one resistor with R = 2 Ω and the solenoid that has same shape with one mentioned at part (a). Wait very long time and...
A solenoid (coil) of radius R has 10 turns per centimeter. It is 10cm long, and...
A solenoid (coil) of radius R has 10 turns per centimeter. It is 10cm long, and the coiled wire carries a current I. In addition to the coil of wire, a second wire runs right down the central axis of the solenoid, carrying a current of 2I. (The solenoid wire doesn't intersect this second wire, because the former wraps around the latter, always a distance R away.) A) Find the magnitude of the total magnetic field at a distance R/2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT