Question

In: Physics

A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a)...

A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm.

(a) Find its inductance.
mH

(b) Find the rate at which current must change through it to produce an emf of 90 mV. (Enter the magnitude.)
A/s

Solutions

Expert Solution

a)

The magnetic flux is produced by the solenoid is given by

the magnetic flux through a single turn is given by

In a length 'l', there are 'nl' such turns, so the total flux is given by

we know that from the definition of the inductance

where

n=no of turns

l=length of solenoid

R=radius of solenoid

I=current through the solenoid

L=inductance of the solenoid

comparing equation (1) and equation (2) we get

Given

n=800

l=25cm=0.25m

R=3.5cm=0.35m

so

or,

b)

the emf is given by

or,

or,

the rate of change of current is

Given,

so,


Related Solutions

A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying...
A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying a current that alternates according to the formula I(t)=I0cos(2πft) where the peak current is I0=1200 mA and the frequency is f=100 Hz. A.) What is the RMS EMF induced by the fluctuating current? B.) What is the RMS strength of the electric field that corresponds to the induced EMF? C.) What is the RMS electric field strength at a distance 6 cm from the...
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its...
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its self-inductance? (b) You are ramping up the current from 0 to 1.0 A in 1.0 s. How much voltage do you have to apply? (c) Calculate the energy stored in the inductor when the current is 1.0 A.
Given a solenoid that has N1 turns, a length L1 and a radius r1 where a...
Given a solenoid that has N1 turns, a length L1 and a radius r1 where a current running through is increasing from I1 to I2 in t seconds. A second solenoid coaxial with the first has N2 turns, a length L2, a radius r2 and a resistance R. Note that both solenoids are not connected, meaning the second is not connected to a source. Give the expression of: a) The initial magnetic field the first solenoid creates inside its coil...
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm...
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm carries a current of 1.90 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 320 turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere's law to calculate the initial magnetic field in the middle of the 320 turn solenoid....
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
Problem_02 Given a solenoid that has N1 turns, a length L1 and a radius r1 where...
Problem_02 Given a solenoid that has N1 turns, a length L1 and a radius r1 where a current running through is increasing from I1 to I2 in t seconds. A second solenoid coaxial with the first has N2 turns, a length L2, a radius r2 and a resistance R. Note that both solenoids are not connected, meaning the second is not connected to a source. Give the expression of: 1) The average emf induced in the loop 2) The average...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in the solenoid is increasing at a uniform rate dI/dt. The induced electric eld at a point near the center of the solenoid and 3.80 cm from its axis is 8.00 10 -5 V/m. Calculate dI/dt
A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current...
A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current in the solenoid is increasing at a uniform rate of 64.0 A/s What is the magnitude of the induced electric field at a point 0.520 cm from the axis of the solenoid? (in V/m) What is the magnitude of the induced electric field at a point 1.30 cm from the axis of the solenoid? (in V/m)
An ideal solenoid, of radius R and n turns per unit length, has a current flowing...
An ideal solenoid, of radius R and n turns per unit length, has a current flowing through it. The current, I, varies with time, t, according to I = I0 + at where I0 and a are constants. A conducting ring of radius, r, is placed inside the solenoid with its axis coinciding with the axis of the solenoid. The ring has a resistance per unit length of H (in units of Ω/m). (a) Use Lenz’s law to determine the...
A 510-turn solenoid has a radius of 8.00 mm and an overall length of 14.0 cm....
A 510-turn solenoid has a radius of 8.00 mm and an overall length of 14.0 cm. (a) What is its inductance? (b) If the solenoid is connected in series with a 2.50-?(ohm electrical symbol) resistor and a battery, what is the time constant of the circuit?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT