Question

In: Physics

a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...

a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid.

c) Now, construct an RL circuit using an ideal battery that has potential difference 5 V, one resistor with R = 2 Ω and the solenoid that has same shape with one mentioned at part (a). Wait very long time and then remove the battery. Find the potential difference across resistor at 2 ms after removing battery? (Hint: First calculate the inductance)

Solutions

Expert Solution

a)Magnetic field in the solenoid B=nI

=4x

n=number of turns per unit length=120/cm=12000/m

I=current=2A

B=nI=4xx12000x2=3.01xT

c)Current at t=2ms

I=

R=resistance=2

=maximum current =V/R=5/2=2.5A

t=2ms=0.002s

L=inductance of solenoid =NnA

A=area of cross section==3.14x =3.14xm2 (r=diameter/2=2/2=1cm=0.01m)

N=total number of turns=nxlength=12000x5=60000

L=NnA=4xx60000x12000x3.14x=0.284H

I==2.5=2.5x1.014=0.986A


Related Solutions

A long solenoid has 110 turns/cm and carries current i. An electron moves within the solenoid...
A long solenoid has 110 turns/cm and carries current i. An electron moves within the solenoid in a circle of radius 2.54 cm perpendicular to the solenoid axis. The speed of the electron is 0.0635c (c = speed of light, equal to 2.998 × 108 m/s). Find the current i in the solenoid.
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 7.00 sin 120?t, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 120πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) E = (b) What is the direction of this electric...
A long solenoid (1500 turns/m) carries a current of 20 mA and has an inside diameter...
A long solenoid (1500 turns/m) carries a current of 20 mA and has an inside diameter of 4.0 cm.  A long wire carries a current of 2.0 A along the axis of the solenoid.  What is the magnitude of the magnetic field at a point that is inside the solenoid and 1.0 cm from the wire? a. 78 µ b.   55 µT c.    48 µT d.   68 µT e.   2.0 µT
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) (b) What is the direction of this electric field when the...
1. An infinitely long solenoid of radius R carries n turns per unit length and current...
1. An infinitely long solenoid of radius R carries n turns per unit length and current I and is oriented such that its axis is along the z direction. What direction must a particle of charge q be moving such that it feels zero force (a) inside the solenoid (b) outside the solenoid 2. Find the maximum magnetic flux through a circular coil of radius L such that L < R placed inside the solenoid of the previous problem.
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in the solenoid is increasing at a uniform rate dI/dt. The induced electric eld at a point near the center of the solenoid and 3.80 cm from its axis is 8.00 10 -5 V/m. Calculate dI/dt
A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current...
A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current in the solenoid is increasing at a uniform rate of 64.0 A/s What is the magnitude of the induced electric field at a point 0.520 cm from the axis of the solenoid? (in V/m) What is the magnitude of the induced electric field at a point 1.30 cm from the axis of the solenoid? (in V/m)
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns; it carries a current of 3.6 A. Calculate the magnitude of the magnetic field inside the solenoid.3. A solenoid 1.3 m long and 2.6 cm in diameter carries a current of 18 A. The magnetic field inside the solenoid is 23mT. Find the length of the solenoid.
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT