Question

In: Physics

A long, thin solenoid has 870 turns per meter and radius 3.00cm . The current in...

A long, thin solenoid has 870 turns per meter and radius 3.00cm . The current in the solenoid is increasing at a uniform rate of 65.0A/s .

A)What is the magnitude of the induced electric field at a point 0.550cm from the axis of the solenoid?

B)What is the magnitude of the induced electric field at a point 1.00cm from the axis of the solenoid?

Solutions

Expert Solution

a.

The magnetic field due to solenoid is,

           B = uonI

Differentiate the above equation on both sides,

          dB/dt = uon dI/dt

The expression for the electric field inside the solenoid is,

       E = r/2 dB/dt

           = (r/2)uon dI/dt

           = (0.550x10-2 m /2)(4(pi)x10-7 T.m/A)(870)(65.0 A/s)

           = 1.95x10-4 N/C

-----------------------------------------------------------------------------------

b.

The expression for the electric field inside the solenoid is,

       E = r/2 dB/dt

           = (r/2)uon dI/dt

           = (1.00x10-2 m /2)(4(pi)x10-7 T.m/A)(870)(65.0 A/s)

           = 3.55x10-4 N/C


Related Solutions

A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current...
A long, thin solenoid has 870 turns per meter and radius 2.70 cm . The current in the solenoid is increasing at a uniform rate of 64.0 A/s What is the magnitude of the induced electric field at a point 0.520 cm from the axis of the solenoid? (in V/m) What is the magnitude of the induced electric field at a point 1.30 cm from the axis of the solenoid? (in V/m)
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in the solenoid is increasing at a uniform rate dI/dt. The induced electric eld at a point near the center of the solenoid and 3.80 cm from its axis is 8.00 10 -5 V/m. Calculate dI/dt
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 7.00 sin 120?t, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 120πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) E = (b) What is the direction of this electric...
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt
A long solenoid with 1.35 x 103 turns per meter and radius 2.00 cm carries an oscillating current I = 3.00 sin 80πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) (b) What is the direction of this electric field when the...
A solenoid (coil) of radius R has 10 turns per centimeter. It is 10cm long, and...
A solenoid (coil) of radius R has 10 turns per centimeter. It is 10cm long, and the coiled wire carries a current I. In addition to the coil of wire, a second wire runs right down the central axis of the solenoid, carrying a current of 2I. (The solenoid wire doesn't intersect this second wire, because the former wraps around the latter, always a distance R away.) A) Find the magnitude of the total magnetic field at a distance R/2...
1. An infinitely long solenoid of radius R carries n turns per unit length and current...
1. An infinitely long solenoid of radius R carries n turns per unit length and current I and is oriented such that its axis is along the z direction. What direction must a particle of charge q be moving such that it feels zero force (a) inside the solenoid (b) outside the solenoid 2. Find the maximum magnetic flux through a circular coil of radius L such that L < R placed inside the solenoid of the previous problem.
An ideal solenoid, of radius R and n turns per unit length, has a current flowing...
An ideal solenoid, of radius R and n turns per unit length, has a current flowing through it. The current, I, varies with time, t, according to I = I0 + at where I0 and a are constants. A conducting ring of radius, r, is placed inside the solenoid with its axis coinciding with the axis of the solenoid. The ring has a resistance per unit length of H (in units of Ω/m). (a) Use Lenz’s law to determine the...
A solenoid with 2000 turns/meter is connected to a power source that delivers an increasing current...
A solenoid with 2000 turns/meter is connected to a power source that delivers an increasing current i60t^2 Ampere.The solenoid has a length of 0.2 m and a radius of 0.05 m. a.what is the magnetic field as a function of timr inside the solenoid? b.Use Faraday's law to find the induced emf caused by this changing magnetic field.
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT