1a) Find all first and second partial derivatives of
f(x,y)=x^4−3x^2y^2+y^4
1b) w=xycosz, x=t, y=t^2, and z=t^3. Find dw/dt using the
appropriate Chain Rule.
1c) Find equation of the tangent plane and find a set of
parametric equations for the normal line to the surface z =
ye^(2xy) at the point (0, 2, 2).
FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ –
4Y = 0
COMPUTE:
L {7 e 3t – 5 cos ( 2t ) – 4 t 2
}
COMPUTE:
L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ]
}
SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE
TRANSFORMS:
Y” + 6Y’ + 5Y = 12 e t
WHEN : f ( 0 ) = -...