Question

In: Civil Engineering

The column has dimension of 500 mm x 500 mm and carries an axial load of...

The column has dimension of 500 mm x 500 mm and carries an axial load of 1210 KN dead load and 650 KN live load. Allowable soil pressure is 240 Kpa. There is 0.7 m height of soil having a unit weight of 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 276.5 Mpa. The footing section is 2.8 m x 2.8 m with a 600 mm thickness. Use 25 mm diameter main bars.

Solutions

Expert Solution


Related Solutions

Investigate the adequacy of the square footing. The column has dimension of 500 mm x 500...
Investigate the adequacy of the square footing. The column has dimension of 500 mm x 500 mm and carries an axial load of 1210 KN dead load and 650 KN live load. Allowable soil pressure is 240 Kpa. There is 0.7 m height of soil having a unit weight of 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 276.5 Mpa. The footing section is 2.8 m x 2.8 m with a 600 mm thickness. Use 25 mm diameter main bars.
design for british code 8110 1.A 500 mm square column carries a dead load of 1200...
design for british code 8110 1.A 500 mm square column carries a dead load of 1200 kN and imposed load of 400 kN. The safe bearing capacity of the soil is 180 kN/m2. Design a square pad footing to resist the loads using the following material strengths: fcu=30 N/mm2, fy=500 N/mm2. 2.Design a pad footing for a rectangular column of section 300x500 mm supporting an axial factored load of 1,400 kN. The safe bearing capacity of the soil is 180...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in single footing. After assuming the depth and density of soil above footing, assume the required depth of footing [10 marks]. a) Check depth due to two-way shear b) Check depth due to one-way shear action c) Calculate the bending moment and steel reinforcement e) Determine development length of dowels d) Check bearing stress e) Determine development length of dowels
Design a baseplate for a W24 x 192 column carrying an axial load of Pu =...
Design a baseplate for a W24 x 192 column carrying an axial load of Pu = 2000k and bearing on a 8′ x 8′ concrete footing with f′c = 3ksi (not in mm show work steps by step )
Design a square concrete column footing to support a 500-mm x 500-mm reinforced concrete column. The...
Design a square concrete column footing to support a 500-mm x 500-mm reinforced concrete column. The center of the column and footing must coincide. Loads: ???=350 ??, ???=480 ??, ???=100 ??−?, ???=130 ??−? Column Design Criteria: ??′=28 ???, ??=400??? Footing Design Criteria: ??′=28 ???, ??=400???, ??=175 ???,??=1.50 ?, ??=16 ??/?3,??=24 ??/?3, ??=20 ??, assume a thickness of the footing of 500 mm.
1) Design a Tied column to support axial Dead load D = 280 K and axial...
1) Design a Tied column to support axial Dead load D = 280 K and axial live load = 500 k, initially assume 2% longitudinal reinforcement f’c = 4000 psi, fy = 60,000 psi. 2) Sketch the column cross-section and show long bars and ties
W shape column must support a axial load (DL=500 kips y LL= 300 kips). The element...
W shape column must support a axial load (DL=500 kips y LL= 300 kips). The element is 30 ft length and braced in the y direction at 14 ft from the column base. The end support conditions are (fixed/pinned). Justify the material’s selection. verify slenderness and local buckling and Select the lightest section
Design a square tied column to support an axial dead load of (W1) k and an...
Design a square tied column to support an axial dead load of (W1) k and an axial live load of (W2) k. Begin using approximately (X) percent longitudinal steel, a concrete strength of 4,000 psi and Grade 60 steel. Draw the details of reinforcement and check all ACI recommendation. W1 = 220 k W2 = 165 k X = 2%
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT