Question

In: Civil Engineering

Design a baseplate for a W24 x 192 column carrying an axial load of Pu =...

Design a baseplate for a W24 x 192 column carrying an axial load of Pu = 2000k and bearing on a 8′ x 8′ concrete footing with f′c = 3ksi (not in mm show work steps by step )

Solutions

Expert Solution


Related Solutions

Given: a. A 16 FT Column of A992 Steel. b. Factored Axial Load (Pu) equal to...
Given: a. A 16 FT Column of A992 Steel. b. Factored Axial Load (Pu) equal to 350 kips. c. Weak Axis Fixities i. Rotation fixed and translation free at the top. ii. Rotation fixed and translation fixed at the bottom. d. Strong-Axis Fixities i. Rotation free and translation free at top. ii. Rotation fixed and translation fixed at bottom. e. Limit Column Selections to Table 4-1 of AISC Steel Manual. f. Show full Calculations are required for final validation.
1) Design a Tied column to support axial Dead load D = 280 K and axial...
1) Design a Tied column to support axial Dead load D = 280 K and axial live load = 500 k, initially assume 2% longitudinal reinforcement f’c = 4000 psi, fy = 60,000 psi. 2) Sketch the column cross-section and show long bars and ties
Design a square tied column to support an axial dead load of (W1) k and an...
Design a square tied column to support an axial dead load of (W1) k and an axial live load of (W2) k. Begin using approximately (X) percent longitudinal steel, a concrete strength of 4,000 psi and Grade 60 steel. Draw the details of reinforcement and check all ACI recommendation. W1 = 220 k W2 = 165 k X = 2%
Design a short square tied column to carry a factored axial load of 1300k and a...
Design a short square tied column to carry a factored axial load of 1300k and a factored moment of 550kft. Place the reinforcement uniformly around the column. Design the ties. Assume interior exposure, f’c = 4000psi, fy = 60,000psi.
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and...
Prompt: Design the representative column for the factored axial load only. Assume pin connections top and bottom. If you want, you might consider designing for 75% of capacity, to allow for remaining capacity for the lateral loads to be determined in the future. I'm Suppose to design a Concrete Column; many assumptions can be made, such as type/strength of concrete. The calculated axial load: Pu= 88.2 Kips
The column has dimension of 500 mm x 500 mm and carries an axial load of...
The column has dimension of 500 mm x 500 mm and carries an axial load of 1210 KN dead load and 650 KN live load. Allowable soil pressure is 240 Kpa. There is 0.7 m height of soil having a unit weight of 15.74 KN/m3, fc’ = 20.7 Mpa, fy = 276.5 Mpa. The footing section is 2.8 m x 2.8 m with a 600 mm thickness. Use 25 mm diameter main bars.
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli...
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b. the load...
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of...
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of cross section dimension 280 mm x 500 mm is reinforced with 4 bars of 25 mm diameter, 2 bars of 20 mm diameter and 2 bars of 12 mm diameter. Use M30 grade concrete and Fe 500 grade steel. Also design a 4 legged ties necessary for this section.
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in...
A 450 mm × 650 mm column supports factored axial load of 2500 kN centered in single footing. After assuming the depth and density of soil above footing, assume the required depth of footing [10 marks]. a) Check depth due to two-way shear b) Check depth due to one-way shear action c) Calculate the bending moment and steel reinforcement e) Determine development length of dowels d) Check bearing stress e) Determine development length of dowels
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT