In: Statistics and Probability
Given n=20 observations:
[1] 17.62080276 2.03655884 16.97386526 4.25347789 1.83408051
5.86805486
[7] 2.15020940 7.85805617 0.44024483 4.40750353 5.58303948
10.95875446
[13] 2.74305620 6.87251402 0.03215674 4.79053522 14.19978116
10.01379904
[19] 10.94377572 2.44097982
It is suggested that these observations follow an exponential
distribution. Test the hypothesis that these are observations of an
exponential distribution using the chi-square test. Draw
conclusions. Thanks.
Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: C1
Observed and Expected Counts
| Category | Observed | Test Proportion  | 
Expected | Contribution to Chi-Square  | 
| 1 | 17.6208 | 0.05 | 6.60106 | 18.3962 | 
| 2 | 2.0366 | 0.05 | 6.60106 | 3.1563 | 
| 3 | 16.9739 | 0.05 | 6.60106 | 16.2997 | 
| 4 | 4.2535 | 0.05 | 6.60106 | 0.8349 | 
| 5 | 1.8341 | 0.05 | 6.60106 | 3.4425 | 
| 6 | 5.8681 | 0.05 | 6.60106 | 0.0814 | 
| 7 | 2.1502 | 0.05 | 6.60106 | 3.0010 | 
| 8 | 7.8581 | 0.05 | 6.60106 | 0.2394 | 
| 9 | 0.4402 | 0.05 | 6.60106 | 5.7499 | 
| 10 | 4.4075 | 0.05 | 6.60106 | 0.7289 | 
| 11 | 5.5830 | 0.05 | 6.60106 | 0.1570 | 
| 12 | 10.9588 | 0.05 | 6.60106 | 2.8767 | 
| 13 | 2.7431 | 0.05 | 6.60106 | 2.2548 | 
| 14 | 6.8725 | 0.05 | 6.60106 | 0.0112 | 
| 15 | 0.0322 | 0.05 | 6.60106 | 6.5369 | 
| 16 | 4.7905 | 0.05 | 6.60106 | 0.4966 | 
| 17 | 14.1998 | 0.05 | 6.60106 | 8.7472 | 
| 18 | 10.0138 | 0.05 | 6.60106 | 1.7644 | 
| 19 | 10.9438 | 0.05 | 6.60106 | 2.8570 | 
| 20 | 2.4410 | 0.05 | 6.60106 | 2.6217 | 
Chi-Square Test
| N | DF | Chi-Sq | P-Value | 
| 132.021 | 19 | 80.2537 | 0.000 | 

O = Observed frequency
E = expected frequency
P-value = 0.000
Conclusion - Reject Ho, We can conclude that the data is not exponentially distributed (Reason P-value is less than 0.05)