In: Statistics and Probability
Suppose the number of children in a household has a
binomial distribution with parameters n=25 and
p=15%.
Find the probability of a household having:
(a) 1 or 24 children
(b) 22 or fewer children
(c) 12 or more children
(d) fewer than 24 children
(e) more than 22 children
Let X be the number of children
X ~ Binomial(25,0.15)
Here are the individual probabilities:
X | P(X=x) |
0 | 0.0171978098522079000000 |
1 | 0.0758726905244466000000 |
2 | 0.1606715799341220000000 |
3 | 0.2173791963814590000000 |
4 | 0.2109856906055340000000 |
5 | 0.1563776295076310000000 |
6 | 0.0919868408868419000000 |
7 | 0.0440609237861344000000 |
8 | 0.0174947785621416000000 |
9 | 0.0058315928540471800000 |
10 | 0.0016465673940839100000 |
11 | 0.0003962327953677880000 |
12 | 0.0000815773402227797000 |
13 | 0.0000143960012157846000 |
14 | 0.0000021775464023875900 |
15 | 0.0000002818001226619240 |
16 | 0.0000000310808958818298 |
17 | 0.0000000029037515183716 |
18 | 0.0000000002277452171272 |
19 | 0.0000000000148069645810 |
20 | 0.0000000000007838981249 |
21 | 0.0000000000000329368960 |
22 | 0.0000000000000010567988 |
23 | 0.0000000000000000243253 |
24 | 0.0000000000000000003577 |
25 | 0.0000000000000000000025 |
To solve all these problems would use the above probability values:-
a)
P(1 or 24 children) = P(1 child) + P(24 child) = 0.0758726905244466 + 0.0000000000000000003577 =
0.0758726905244466000000 |
b)
P(22 or fewer children)
=
0.9999999999999990000000 |
c)
P(12 or more children) =
0.0000984669159811122000
d)
P(fewer than 24 children)
= 0.9999999999999990000000
e)
P(more than 22 children)
= 0.0000000000000000246855
Let me know in comments if anything is not clear. Will reply ASAP. Please do upvote if satisfied.