In: Statistics and Probability
Suppose the number of children in a household has a
binomial distribution with parameters n=25 and
p=15%.
Find the probability of a household having:
(a) 1 or 24 children  
(b) 22 or fewer children  
(c) 12 or more children  
(d) fewer than 24 children  
(e) more than 22 children
Let X be the number of children
X ~ Binomial(25,0.15)

Here are the individual probabilities:
| X | P(X=x) | 
| 0 | 0.0171978098522079000000 | 
| 1 | 0.0758726905244466000000 | 
| 2 | 0.1606715799341220000000 | 
| 3 | 0.2173791963814590000000 | 
| 4 | 0.2109856906055340000000 | 
| 5 | 0.1563776295076310000000 | 
| 6 | 0.0919868408868419000000 | 
| 7 | 0.0440609237861344000000 | 
| 8 | 0.0174947785621416000000 | 
| 9 | 0.0058315928540471800000 | 
| 10 | 0.0016465673940839100000 | 
| 11 | 0.0003962327953677880000 | 
| 12 | 0.0000815773402227797000 | 
| 13 | 0.0000143960012157846000 | 
| 14 | 0.0000021775464023875900 | 
| 15 | 0.0000002818001226619240 | 
| 16 | 0.0000000310808958818298 | 
| 17 | 0.0000000029037515183716 | 
| 18 | 0.0000000002277452171272 | 
| 19 | 0.0000000000148069645810 | 
| 20 | 0.0000000000007838981249 | 
| 21 | 0.0000000000000329368960 | 
| 22 | 0.0000000000000010567988 | 
| 23 | 0.0000000000000000243253 | 
| 24 | 0.0000000000000000003577 | 
| 25 | 0.0000000000000000000025 | 
To solve all these problems would use the above probability values:-
a)
P(1 or 24 children) = P(1 child) + P(24 child) = 0.0758726905244466 + 0.0000000000000000003577 =
| 0.0758726905244466000000 | 
b)
P(22 or fewer children)
=
| 0.9999999999999990000000 | 
c)
P(12 or more children) =
0.0000984669159811122000
d)
P(fewer than 24 children)
= 0.9999999999999990000000
e)
P(more than 22 children)
= 0.0000000000000000246855
Let me know in comments if anything is not clear. Will reply ASAP. Please do upvote if satisfied.